C# Class MyMediaLite.Classification.LogisticRegression

Regularized logistic regression trained by stochastic gradient descent
Implementation for dense feature vectors. Predictor variables are implemented transposed to their normal layout, due to being used in for the KDD Cup 2011 ensembles.
显示文件 Open project: zenogantner/MML-KDD Class Usage Examples

Public Properties

Property Type Description
parameters IList

Public Methods

Method Description
InitModel ( ) : void
LogisticRegression ( ) : System

Default constructor

PredictProbability ( IList input ) : double

Predict probability for given features

Train ( ) : void

Train using stochastic gradient descent

Method Details

InitModel() public method

public InitModel ( ) : void
return void

LogisticRegression() public method

Default constructor
public LogisticRegression ( ) : System
return System

PredictProbability() public method

Predict probability for given features
public PredictProbability ( IList input ) : double
input IList the input
return double

Train() public method

Train using stochastic gradient descent
public Train ( ) : void
return void

Property Details

parameters public_oe property

public IList parameters
return IList