C# Class Ocronet.Dynamic.Recognizers.MlpClassifier

Inheritance: IBatchDense
Mostra file Open project: nickun/OCRonet Class Usage Examples

Protected Properties

Property Type Description
crossvalidate bool
cv_error float
nn_error float
personal_number int
w1 Floatarray

Public Methods

Method Description
ChangeHidden ( int newn ) : void
Complexity ( ) : float
Copy ( MlpClassifier other ) : void
CrossValidatedError ( ) : float
Info ( ) : void
InitData ( IDataset ds, int nhidden, Intarray newc2i = null, Intarray newi2c = null ) : void
MlpClassifier ( ) : System
MlpClassifier ( int PersonalNumber ) : System
OutputsDense ( Floatarray result, Floatarray x_raw ) : float
TrainDense ( IDataset ds ) : void
TrainOne ( Floatarray z, Floatarray target, Floatarray x, float eta ) : void

do a single stochastic gradient descent step

dsigmoidy ( float y ) : float
dstdsigmoid ( float x ) : float

derivative of the "standard" sigmoid

nClasses ( ) : int
nFeatures ( ) : int
nHidden ( ) : int
sigmoid ( float x ) : float

sigmoid function for neural networks 0 .. 1

sigmoid_speed ( float x ) : float

"standard" sigmoid -1.71593428 .. 1.71593428

Protected Methods

Method Description
InitRandom ( int ninput, int nhidden, int noutput ) : void
count_zeros ( Floatarray a ) : int
logspace ( int i, int n, float lo, float hi ) : float

logarithmically spaced samples in an interval

mvmul0 ( Floatarray result, Floatarray a, Floatarray v ) : void

random samples from the normal density

normalize ( Floatarray v ) : void
outer_add ( Floatarray a, Floatarray u, Floatarray v, float eps ) : void
vmmul0 ( Floatarray result, Floatarray v, Floatarray a ) : void

Method Details

ChangeHidden() public method

public ChangeHidden ( int newn ) : void
newn int
return void

Complexity() public method

public Complexity ( ) : float
return float

Copy() public method

public Copy ( MlpClassifier other ) : void
other MlpClassifier
return void

CrossValidatedError() public method

public CrossValidatedError ( ) : float
return float

Info() public method

public Info ( ) : void
return void

InitData() public method

public InitData ( IDataset ds, int nhidden, Intarray newc2i = null, Intarray newi2c = null ) : void
ds Ocronet.Dynamic.IOData.IDataset
nhidden int
newc2i Intarray
newi2c Intarray
return void

InitRandom() protected method

protected InitRandom ( int ninput, int nhidden, int noutput ) : void
ninput int
nhidden int
noutput int
return void

MlpClassifier() public method

public MlpClassifier ( ) : System
return System

MlpClassifier() public method

public MlpClassifier ( int PersonalNumber ) : System
PersonalNumber int
return System

OutputsDense() public method

public OutputsDense ( Floatarray result, Floatarray x_raw ) : float
result Floatarray
x_raw Floatarray
return float

TrainDense() public method

public TrainDense ( IDataset ds ) : void
ds Ocronet.Dynamic.IOData.IDataset
return void

TrainOne() public method

do a single stochastic gradient descent step
public TrainOne ( Floatarray z, Floatarray target, Floatarray x, float eta ) : void
z Floatarray
target Floatarray
x Floatarray
eta float
return void

count_zeros() protected static method

protected static count_zeros ( Floatarray a ) : int
a Floatarray
return int

dsigmoidy() public static method

public static dsigmoidy ( float y ) : float
y float
return float

dstdsigmoid() public static method

derivative of the "standard" sigmoid
public static dstdsigmoid ( float x ) : float
x float
return float

logspace() protected static method

logarithmically spaced samples in an interval
protected static logspace ( int i, int n, float lo, float hi ) : float
i int
n int
lo float
hi float
return float

mvmul0() protected static method

random samples from the normal density
protected static mvmul0 ( Floatarray result, Floatarray a, Floatarray v ) : void
result Floatarray
a Floatarray
v Floatarray
return void

nClasses() public method

public nClasses ( ) : int
return int

nFeatures() public method

public nFeatures ( ) : int
return int

nHidden() public method

public nHidden ( ) : int
return int

normalize() protected method

protected normalize ( Floatarray v ) : void
v Floatarray
return void

outer_add() protected static method

protected static outer_add ( Floatarray a, Floatarray u, Floatarray v, float eps ) : void
a Floatarray
u Floatarray
v Floatarray
eps float
return void

sigmoid() public static method

sigmoid function for neural networks 0 .. 1
public static sigmoid ( float x ) : float
x float
return float

sigmoid_speed() public static method

"standard" sigmoid -1.71593428 .. 1.71593428
public static sigmoid_speed ( float x ) : float
x float
return float

vmmul0() protected static method

protected static vmmul0 ( Floatarray result, Floatarray v, Floatarray a ) : void
result Floatarray
v Floatarray
a Floatarray
return void

Property Details

crossvalidate protected_oe property

protected bool crossvalidate
return bool

cv_error protected_oe property

protected float cv_error
return float

nn_error protected_oe property

protected float nn_error
return float

personal_number protected_oe property

protected int personal_number
return int

w1 protected_oe property

protected Floatarray w1
return Floatarray