C# Класс SwarmOps.Optimizers.MOL

Many Optimizing Liaisons (MOL) optimization method devised as a simplification to the PSO method originally due to Eberhart et al. (1, 2). The MOL method does not have any attraction to the particle's own best known position, and the algorithm also makes use of random selection of which particle to update instead of iterating over the entire swarm. It is similar to the "Social Only" PSO suggested by Kennedy (3), and was studied more thoroguhly by Pedersen et al. (4) who found it to sometimes outperform PSO, and have more easily tunable control parameters.
References: (1) J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume IV, pages 1942-1948, Perth, Australia, 1995 (2) Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 69-73, Anchorage, AK, USA, 1998. (3) J. Kennedy. The particle swarm: social adaptation of knowledge, In: Proceedings of the IEEE International Conference on Evolutionary Computation, Indianapolis, USA, 1997. (4) M.E.H. Pedersen and A.J. Chipperfield. Simplifying particle swarm optimization. Applied Soft Computing, 10, p. 618-628, 2010.
Наследование: Optimizer
Показать файл Открыть проект

Открытые методы

Метод Описание
EnforceConstraints ( double &parameters ) : bool

Enforce constraints and evaluate feasiblity of the wrapped problem.

Feasible ( double parameters ) : bool

Evaluate feasibility (constraint satisfaction) of the wrapped problem.

GetNumAgents ( double parameters ) : int

Get parameter, Number of agents, aka. swarm-size.

GetOmega ( double parameters ) : double

Get parameter, Omega.

GetPhi ( double parameters ) : double

Get parameter, Phi.

MOL ( ) : System.Diagnostics

Construct the object.

MOL ( Problem problem ) : System.Diagnostics

Construct the object.

Optimize ( double parameters ) : Result

Perform one optimization run and return the best found solution.

Описание методов

EnforceConstraints() публичный Метод

Enforce constraints and evaluate feasiblity of the wrapped problem.
public EnforceConstraints ( double &parameters ) : bool
parameters double Candidate solution.
Результат bool

Feasible() публичный Метод

Evaluate feasibility (constraint satisfaction) of the wrapped problem.
public Feasible ( double parameters ) : bool
parameters double Candidate solution.
Результат bool

GetNumAgents() публичный Метод

Get parameter, Number of agents, aka. swarm-size.
public GetNumAgents ( double parameters ) : int
parameters double Optimizer parameters.
Результат int

GetOmega() публичный Метод

Get parameter, Omega.
public GetOmega ( double parameters ) : double
parameters double Optimizer parameters.
Результат double

GetPhi() публичный Метод

Get parameter, Phi.
public GetPhi ( double parameters ) : double
parameters double Optimizer parameters.
Результат double

MOL() публичный Метод

Construct the object.
public MOL ( ) : System.Diagnostics
Результат System.Diagnostics

MOL() публичный Метод

Construct the object.
public MOL ( Problem problem ) : System.Diagnostics
problem Problem Problem to optimize.
Результат System.Diagnostics

Optimize() публичный Метод

Perform one optimization run and return the best found solution.
public Optimize ( double parameters ) : Result
parameters double Control parameters for the optimizer.
Результат Result