C# 클래스 SwarmOps.Optimizers.MOL

Many Optimizing Liaisons (MOL) optimization method devised as a simplification to the PSO method originally due to Eberhart et al. (1, 2). The MOL method does not have any attraction to the particle's own best known position, and the algorithm also makes use of random selection of which particle to update instead of iterating over the entire swarm. It is similar to the "Social Only" PSO suggested by Kennedy (3), and was studied more thoroguhly by Pedersen et al. (4) who found it to sometimes outperform PSO, and have more easily tunable control parameters.
References: (1) J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of IEEE International Conference on Neural Networks, volume IV, pages 1942-1948, Perth, Australia, 1995 (2) Y. Shi and R.C. Eberhart. A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolutionary Computation, pages 69-73, Anchorage, AK, USA, 1998. (3) J. Kennedy. The particle swarm: social adaptation of knowledge, In: Proceedings of the IEEE International Conference on Evolutionary Computation, Indianapolis, USA, 1997. (4) M.E.H. Pedersen and A.J. Chipperfield. Simplifying particle swarm optimization. Applied Soft Computing, 10, p. 618-628, 2010.
상속: Optimizer
파일 보기 프로젝트 열기: DanWBR/dwsim3

공개 메소드들

메소드 설명
EnforceConstraints ( double &parameters ) : bool

Enforce constraints and evaluate feasiblity of the wrapped problem.

Feasible ( double parameters ) : bool

Evaluate feasibility (constraint satisfaction) of the wrapped problem.

GetNumAgents ( double parameters ) : int

Get parameter, Number of agents, aka. swarm-size.

GetOmega ( double parameters ) : double

Get parameter, Omega.

GetPhi ( double parameters ) : double

Get parameter, Phi.

MOL ( ) : System.Diagnostics

Construct the object.

MOL ( Problem problem ) : System.Diagnostics

Construct the object.

Optimize ( double parameters ) : Result

Perform one optimization run and return the best found solution.

메소드 상세

EnforceConstraints() 공개 메소드

Enforce constraints and evaluate feasiblity of the wrapped problem.
public EnforceConstraints ( double &parameters ) : bool
parameters double Candidate solution.
리턴 bool

Feasible() 공개 메소드

Evaluate feasibility (constraint satisfaction) of the wrapped problem.
public Feasible ( double parameters ) : bool
parameters double Candidate solution.
리턴 bool

GetNumAgents() 공개 메소드

Get parameter, Number of agents, aka. swarm-size.
public GetNumAgents ( double parameters ) : int
parameters double Optimizer parameters.
리턴 int

GetOmega() 공개 메소드

Get parameter, Omega.
public GetOmega ( double parameters ) : double
parameters double Optimizer parameters.
리턴 double

GetPhi() 공개 메소드

Get parameter, Phi.
public GetPhi ( double parameters ) : double
parameters double Optimizer parameters.
리턴 double

MOL() 공개 메소드

Construct the object.
public MOL ( ) : System.Diagnostics
리턴 System.Diagnostics

MOL() 공개 메소드

Construct the object.
public MOL ( Problem problem ) : System.Diagnostics
problem Problem Problem to optimize.
리턴 System.Diagnostics

Optimize() 공개 메소드

Perform one optimization run and return the best found solution.
public Optimize ( double parameters ) : Result
parameters double Control parameters for the optimizer.
리턴 Result