C# Class Emgu.CV.HOGDescriptor

A HOG discriptor
Inheritance: Emgu.Util.UnmanagedObject
Exibir arquivo Open project: fajoy/RTSPExample Class Usage Examples

Public Methods

Method Description
Compute ( Byte>.Image image, Size winStride, Size padding, Point locations ) : float[]

DetectMultiScale ( Byte>.Image image ) : System.Drawing.Rectangle[]

Perfroms object detection with increasing detection window.

DetectMultiScale ( Byte>.Image image, double hitThreshold, Size winStride, Size padding, double scale, int finalThreshold, bool useMeanshiftGrouping ) : System.Drawing.Rectangle[]

Perfroms object detection with increasing detection window.

GetDefaultPeopleDetector ( ) : float[]

Return the default people detector

HOGDescriptor ( ) : System

Create a new HOGDescriptor

HOGDescriptor ( Byte>.Image template ) : System

Create a new HogDescriptor using the specific template and default parameters.

HOGDescriptor ( Byte>.Image template, Size blockSize, Size blockStride, Size cellSize, int nbins, int derivAperture, double winSigma, double L2HysThreshold, bool gammaCorrection ) : System

Create a new HOGDescriptor using the specific parameters.

HOGDescriptor ( Size winSize, Size blockSize, Size blockStride, Size cellSize, int nbins, int derivAperture, double winSigma, double L2HysThreshold, bool gammaCorrection ) : System

Create a new HOGDescriptor using the specific parameters.

SetSVMDetector ( float detector ) : void

Set the SVM detector

Protected Methods

Method Description
DisposeObject ( ) : void

Release the unmanaged memory associated with this HOGDescriptor

Method Details

Compute() public method

public Compute ( Byte>.Image image, Size winStride, Size padding, Point locations ) : float[]
image Byte>.Image The image
winStride System.Drawing.Size Window stride. Must be a multiple of block stride. Use Size.Empty for default
padding System.Drawing.Size Padding. Use Size.Empty for default
locations Point Locations for the computation. Can be null if not needed
return float[]

DetectMultiScale() public method

Perfroms object detection with increasing detection window.
public DetectMultiScale ( Byte>.Image image ) : System.Drawing.Rectangle[]
image Byte>.Image The image to search in
return System.Drawing.Rectangle[]

DetectMultiScale() public method

Perfroms object detection with increasing detection window.
public DetectMultiScale ( Byte>.Image image, double hitThreshold, Size winStride, Size padding, double scale, int finalThreshold, bool useMeanshiftGrouping ) : System.Drawing.Rectangle[]
image Byte>.Image The image to search in
hitThreshold double /// Threshold for the distance between features and SVM classifying plane. /// Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). /// But if the free coefficient is omitted (which is allowed), you can specify it manually here. ///
winStride System.Drawing.Size Window stride. Must be a multiple of block stride.
padding System.Drawing.Size
scale double Coefficient of the detection window increase.
finalThreshold int After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping. Should be an integer if not using meanshift grouping. Use 2.0 for default
useMeanshiftGrouping bool If true, it will use meanshift grouping.
return System.Drawing.Rectangle[]

DisposeObject() protected method

Release the unmanaged memory associated with this HOGDescriptor
protected DisposeObject ( ) : void
return void

GetDefaultPeopleDetector() public static method

Return the default people detector
public static GetDefaultPeopleDetector ( ) : float[]
return float[]

HOGDescriptor() public method

Create a new HOGDescriptor
public HOGDescriptor ( ) : System
return System

HOGDescriptor() public method

Create a new HogDescriptor using the specific template and default parameters.
public HOGDescriptor ( Byte>.Image template ) : System
template Byte>.Image The template image to be detected.
return System

HOGDescriptor() public method

Create a new HOGDescriptor using the specific parameters.
public HOGDescriptor ( Byte>.Image template, Size blockSize, Size blockStride, Size cellSize, int nbins, int derivAperture, double winSigma, double L2HysThreshold, bool gammaCorrection ) : System
template Byte>.Image The template image to be detected.
blockSize System.Drawing.Size Block size in cells. Use (16, 16) for default.
blockStride System.Drawing.Size Block stride. Must be a multiple of cell size. Use (8,8) for default.
cellSize System.Drawing.Size Cell size. Use (8, 8) for default.
nbins int Number of bins. Use 9 for default.
derivAperture int Use 1 for default.
winSigma double Gaussian smoothing window parameter. Use -1 for default.
L2HysThreshold double L2-Hys normalization method shrinkage. Use 0.2 for default.
gammaCorrection bool Do gamma correction preprocessing or not. Use true for default.
return System

HOGDescriptor() public method

Create a new HOGDescriptor using the specific parameters.
public HOGDescriptor ( Size winSize, Size blockSize, Size blockStride, Size cellSize, int nbins, int derivAperture, double winSigma, double L2HysThreshold, bool gammaCorrection ) : System
winSize System.Drawing.Size Detection window size. Must be aligned to block size and block stride. Must match the size of the training image. Use (64, 128) for default.
blockSize System.Drawing.Size Block size in cells. Use (16, 16) for default.
blockStride System.Drawing.Size Block stride. Must be a multiple of cell size. Use (8,8) for default.
cellSize System.Drawing.Size Cell size. Use (8, 8) for default.
nbins int Number of bins. Use 9 for default.
derivAperture int Use 1 for default.
winSigma double Gaussian smoothing window parameter. Use -1 for default.
L2HysThreshold double L2-Hys normalization method shrinkage. Use 0.2 for default.
gammaCorrection bool Do gamma correction preprocessing or not. Use true for default.
return System

SetSVMDetector() public method

Set the SVM detector
public SetSVMDetector ( float detector ) : void
detector float The SVM detector
return void