Méthode | Description | |
---|---|---|
Compute ( Byte>.Image |
|
|
DetectMultiScale ( Byte>.Image |
Perfroms object detection with increasing detection window.
|
|
DetectMultiScale ( Byte>.Image |
Perfroms object detection with increasing detection window.
|
|
GetDefaultPeopleDetector ( ) : float[] |
Return the default people detector
|
|
HOGDescriptor ( ) : System |
Create a new HOGDescriptor
|
|
HOGDescriptor ( Byte>.Image |
Create a new HogDescriptor using the specific template and default parameters.
|
|
HOGDescriptor ( Byte>.Image |
Create a new HOGDescriptor using the specific parameters.
|
|
HOGDescriptor ( |
Create a new HOGDescriptor using the specific parameters.
|
|
SetSVMDetector ( float detector ) : void |
Set the SVM detector
|
Méthode | Description | |
---|---|---|
DisposeObject ( ) : void |
Release the unmanaged memory associated with this HOGDescriptor
|
public Compute ( Byte>.Image |
||
image | Byte>.Image | The image |
winStride | Window stride. Must be a multiple of block stride. Use Size.Empty for default | |
padding | Padding. Use Size.Empty for default | |
locations | Point | Locations for the computation. Can be null if not needed |
Résultat | float[] |
public DetectMultiScale ( Byte>.Image |
||
image | Byte>.Image | The image to search in |
Résultat | System.Drawing.Rectangle[] |
public DetectMultiScale ( Byte>.Image |
||
image | Byte>.Image | The image to search in |
hitThreshold | double | /// Threshold for the distance between features and SVM classifying plane. /// Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). /// But if the free coefficient is omitted (which is allowed), you can specify it manually here. /// |
winStride | Window stride. Must be a multiple of block stride. | |
padding | ||
scale | double | Coefficient of the detection window increase. |
finalThreshold | int | After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping. Should be an integer if not using meanshift grouping. Use 2.0 for default |
useMeanshiftGrouping | bool | If true, it will use meanshift grouping. |
Résultat | System.Drawing.Rectangle[] |
public static GetDefaultPeopleDetector ( ) : float[] | ||
Résultat | float[] |
public HOGDescriptor ( Byte>.Image |
||
template | Byte>.Image | The template image to be detected. |
Résultat | System |
public HOGDescriptor ( Byte>.Image |
||
template | Byte>.Image | The template image to be detected. |
blockSize | Block size in cells. Use (16, 16) for default. | |
blockStride | Block stride. Must be a multiple of cell size. Use (8,8) for default. | |
cellSize | Cell size. Use (8, 8) for default. | |
nbins | int | Number of bins. Use 9 for default. |
derivAperture | int | Use 1 for default. |
winSigma | double | Gaussian smoothing window parameter. Use -1 for default. |
L2HysThreshold | double | L2-Hys normalization method shrinkage. Use 0.2 for default. |
gammaCorrection | bool | Do gamma correction preprocessing or not. Use true for default. |
Résultat | System |
public HOGDescriptor ( |
||
winSize | Detection window size. Must be aligned to block size and block stride. Must match the size of the training image. Use (64, 128) for default. | |
blockSize | Block size in cells. Use (16, 16) for default. | |
blockStride | Block stride. Must be a multiple of cell size. Use (8,8) for default. | |
cellSize | Cell size. Use (8, 8) for default. | |
nbins | int | Number of bins. Use 9 for default. |
derivAperture | int | Use 1 for default. |
winSigma | double | Gaussian smoothing window parameter. Use -1 for default. |
L2HysThreshold | double | L2-Hys normalization method shrinkage. Use 0.2 for default. |
gammaCorrection | bool | Do gamma correction preprocessing or not. Use true for default. |
Résultat | System |
public SetSVMDetector ( float detector ) : void | ||
detector | float | The SVM detector |
Résultat | void |