C# Class Accord.Statistics.Kernels.Sparse.SparseGaussian

Inheritance: KernelBase, IKernel, IDistance, IReverseDistance
ファイルを表示 Open project: accord-net/framework Class Usage Examples

Public Methods

Method Description
Distance ( double x, double y ) : double

Computes the distance in input space between two points given in feature space.

Estimate ( double inputs, int samples, DoubleRange &range ) : SparseGaussian

Estimate appropriate values for sigma given a data set.

This method uses a simple heuristic to obtain appropriate values for sigma in a radial basis function kernel. The heuristic is shown by Caputo, Sim, Furesjo and Smola, "Appearance-based object recognition using SVMs: which kernel should I use?", 2002.

Function ( double x, double y ) : double

Gaussian Kernel function.

ReverseDistance ( double x, double y ) : double

Computes the squared distance in input space between two points given in feature space.

SparseGaussian ( ) : System

Constructs a new Sparse Gaussian Kernel

SparseGaussian ( double sigma ) : System

Constructs a new Sparse Gaussian Kernel

Method Details

Distance() public method

Computes the distance in input space between two points given in feature space.
public Distance ( double x, double y ) : double
x double Vector x in feature (kernel) space.
y double Vector y in feature (kernel) space.
return double

Estimate() public static method

Estimate appropriate values for sigma given a data set.
This method uses a simple heuristic to obtain appropriate values for sigma in a radial basis function kernel. The heuristic is shown by Caputo, Sim, Furesjo and Smola, "Appearance-based object recognition using SVMs: which kernel should I use?", 2002.
public static Estimate ( double inputs, int samples, DoubleRange &range ) : SparseGaussian
inputs double The data set.
samples int The number of random samples to analyze.
range AForge.DoubleRange The range of suitable values for sigma.
return SparseGaussian

Function() public method

Gaussian Kernel function.
public Function ( double x, double y ) : double
x double Vector x in input space.
y double Vector y in input space.
return double

ReverseDistance() public method

Computes the squared distance in input space between two points given in feature space.
public ReverseDistance ( double x, double y ) : double
x double Vector x in feature (kernel) space.
y double Vector y in feature (kernel) space.
return double

SparseGaussian() public method

Constructs a new Sparse Gaussian Kernel
public SparseGaussian ( ) : System
return System

SparseGaussian() public method

Constructs a new Sparse Gaussian Kernel
public SparseGaussian ( double sigma ) : System
sigma double The standard deviation for the Gaussian distribution. Default is 1.
return System