Method | Description | |
---|---|---|
Distance ( double x, double y ) : double |
Computes the distance in input space between two points given in feature space.
|
|
Estimate ( double inputs, int samples, |
Estimate appropriate values for sigma given a data set. This method uses a simple heuristic to obtain appropriate values for sigma in a radial basis function kernel. The heuristic is shown by Caputo, Sim, Furesjo and Smola, "Appearance-based object recognition using SVMs: which kernel should I use?", 2002. |
|
Function ( double x, double y ) : double |
Gaussian Kernel function.
|
|
ReverseDistance ( double x, double y ) : double |
Computes the squared distance in input space between two points given in feature space.
|
|
SparseGaussian ( ) : System |
Constructs a new Sparse Gaussian Kernel
|
|
SparseGaussian ( double sigma ) : System |
Constructs a new Sparse Gaussian Kernel
|
public Distance ( double x, double y ) : double | ||
x | double | Vector |
y | double | Vector |
return | double |
public static Estimate ( double inputs, int samples, |
||
inputs | double | The data set. |
samples | int | The number of random samples to analyze. |
range | The range of suitable values for sigma. | |
return |
public Function ( double x, double y ) : double | ||
x | double | Vector |
y | double | Vector |
return | double |
public ReverseDistance ( double x, double y ) : double | ||
x | double | Vector |
y | double | Vector |
return | double |
public SparseGaussian ( double sigma ) : System | ||
sigma | double | The standard deviation for the Gaussian distribution. Default is 1. |
return | System |