Method | Description | |
---|---|---|
Bivariate ( double x, double y, double rho ) : double |
Bivariate normal cumulative distribution function.
|
|
BivariateComplemented ( double x, double y, double rho ) : double |
Complemented bivariate normal cumulative distribution function.
|
|
Complemented ( double value ) : double |
Complemented cumulative distribution function.
|
|
Derivative ( double value ) : double |
First derivative of
|
|
Function ( double value ) : double |
Normal cumulative distribution function.
|
|
Gaussian ( double sigmaSquared, double x ) : double |
1-D Gaussian function. The function calculates 1-D Gaussian function: f(x) = exp( x * x / ( -2 * s * s ) ) / ( s * sqrt( 2 * PI ) ) |
|
Gaussian2D ( double sigmaSquared, double x, double y ) : double |
2-D Gaussian function. The function calculates 2-D Gaussian function: f(x, y) = exp( x * x + y * y / ( -2 * s * s ) ) / ( s * s * 2 * PI ) |
|
HighAccuracyComplemented ( double x ) : double |
High-accuracy Complementary normal distribution function. This function uses 9 tabled values to provide tail values of the normal distribution, also known as complementary Phi, with an absolute error of 1e-14 ~ 1e-16. References: - George Marsaglia, Evaluating the Normal Distribution, 2004. Available in: http://www.jstatsoft.org/v11/a05/paper |
|
HighAccuracyFunction ( double x ) : double |
High-accuracy Normal cumulative distribution function. The following formula provide probabilities with an absolute error less than 8e-16. References: - George Marsaglia, Evaluating the Normal Distribution, 2004. Available in: http://www.jstatsoft.org/v11/a05/paper |
|
Inverse ( double y0 ) : double |
Normal (Gaussian) inverse cumulative distribution function. For small arguments There are two rational functions P/Q, one for |
|
Kernel ( double sigmaSquared, int size ) : double[] |
1-D Gaussian kernel. The function calculates 1-D Gaussian kernel, which is array of Gaussian function's values in the [-r, r] range of x value, where r=floor(size/2). |
|
Kernel2D ( double sigmaSquared, int size ) : ].double[ |
2-D Gaussian kernel. The function calculates 2-D Gaussian kernel, which is array of Gaussian function's values in the [-r, r] range of x,y values, where r=floor(size/2). |
|
Log ( double value ) : double |
Normal cumulative distribution function.
|
|
LogDerivative ( double value ) : double |
Log of the first derivative of
|
Method | Description | |
---|---|---|
BVND ( double dh, double dk, double r ) : double |
A function for computing bivariate normal probabilities. BVND calculates the probability that X > DH and Y > DK. This method is based on the work done by Alan Genz, Department of Mathematics, Washington State University. Pullman, WA 99164-3113 Email: [email protected]. This work was shared under a 3-clause BSD license. Please see source file for more details and the actual license text. This function is based on the method described by Drezner, Z and G.O. Wesolowsky, (1989), On the computation of the bivariate normal integral, Journal of Statist. Comput. Simul. 35, pp. 101-107, with major modifications for double precision, and for |R| close to 1. |
public static Bivariate ( double x, double y, double rho ) : double | ||
x | double | The value of the first variate. |
y | double | The value of the second variate. |
rho | double | The correlation coefficient between x and y. This can be computed
/// from a covariance matrix C as rho = C_12 / (sqrt(C_11) * sqrt(C_22)) . |
return | double |
public static BivariateComplemented ( double x, double y, double rho ) : double | ||
x | double | The value of the first variate. |
y | double | The value of the second variate. |
rho | double | The correlation coefficient between x and y. This can be computed
/// from a covariance matrix C as rho = C_12 / (sqrt(C_11) * sqrt(C_22)) . |
return | double |
public static Complemented ( double value ) : double | ||
value | double | |
return | double |
public static Derivative ( double value ) : double | ||
value | double | |
return | double |
public static Function ( double value ) : double | ||
value | double | |
return | double |
public static Gaussian ( double sigmaSquared, double x ) : double | ||
sigmaSquared | double | The variance parameter σ² (sigma squared). |
x | double | x value. |
return | double |
public static Gaussian2D ( double sigmaSquared, double x, double y ) : double | ||
sigmaSquared | double | The variance parameter σ² (sigma squared). |
x | double | x value. |
y | double | y value. |
return | double |
public static HighAccuracyComplemented ( double x ) : double | ||
x | double | |
return | double |
public static HighAccuracyFunction ( double x ) : double | ||
x | double | |
return | double |
public static Kernel ( double sigmaSquared, int size ) : double[] | ||
sigmaSquared | double | The variance parameter σ² (sigma squared). |
size | int | Kernel size (should be odd), [3, 101]. |
return | double[] |
public static Kernel2D ( double sigmaSquared, int size ) : ].double[ | ||
sigmaSquared | double | The variance parameter σ² (sigma squared). |
size | int | Kernel size (should be odd), [3, 101]. |
return | ].double[ |
public static LogDerivative ( double value ) : double | ||
value | double | |
return | double |