C# Класс OpenCvSharp.ML.SVM

Support Vector Machines
Наследование: StatModel
Показать файл Открыть проект

Открытые методы

Метод Описание
Create ( ) : SVM

Creates empty model. Use StatModel::Train to train the model. Since %SVM has several parameters, you may want to find the best parameters for your problem, it can be done with SVM::TrainAuto.

GetDecisionFunction ( int i, OutputArray alpha, OutputArray svidx ) : double

Retrieves the decision function

GetDefaultGrid ( ParamTypes paramId ) : OpenCvSharp.ML.ParamGrid

Generates a grid for SVM parameters.

GetSupportVectors ( ) : Mat

Retrieves all the support vectors

SetCustomKernel ( Kernel kernel ) : void

Initialize with custom kernel.

TrainAuto ( OpenCvSharp.ML.TrainData data, int kFold = 10, OpenCvSharp.ML.ParamGrid cGrid = null, OpenCvSharp.ML.ParamGrid gammaGrid = null, OpenCvSharp.ML.ParamGrid pGrid = null, OpenCvSharp.ML.ParamGrid nuGrid = null, OpenCvSharp.ML.ParamGrid coeffGrid = null, OpenCvSharp.ML.ParamGrid degreeGrid = null, bool balanced = false ) : bool

Trains an %SVM with optimal parameters.

Защищенные методы

Метод Описание
Dispose ( bool disposing ) : void

Clean up any resources being used.

SVM ( IntPtr p ) : System

Creates instance by raw pointer cv::ml::SVM*

Описание методов

Create() публичный статический Метод

Creates empty model. Use StatModel::Train to train the model. Since %SVM has several parameters, you may want to find the best parameters for your problem, it can be done with SVM::TrainAuto.
public static Create ( ) : SVM
Результат SVM

Dispose() защищенный Метод

Clean up any resources being used.
protected Dispose ( bool disposing ) : void
disposing bool /// If disposing equals true, the method has been called directly or indirectly by a user's code. Managed and unmanaged resources can be disposed. /// If false, the method has been called by the runtime from inside the finalizer and you should not reference other objects. Only unmanaged resources can be disposed. ///
Результат void

GetDecisionFunction() публичный Метод

Retrieves the decision function
public GetDecisionFunction ( int i, OutputArray alpha, OutputArray svidx ) : double
i int i the index of the decision function. /// If the problem solved is regression, 1-class or 2-class classification, then /// there will be just one decision function and the index should always be 0. /// Otherwise, in the case of N-class classification, there will be N(N-1)/2 decision functions.
alpha OutputArray alpha the optional output vector for weights, corresponding to /// different support vectors. In the case of linear %SVM all the alpha's will be 1's.
svidx OutputArray the optional output vector of indices of support vectors /// within the matrix of support vectors (which can be retrieved by SVM::getSupportVectors). /// In the case of linear %SVM each decision function consists of a single "compressed" support vector.
Результат double

GetDefaultGrid() публичный статический Метод

Generates a grid for SVM parameters.
public static GetDefaultGrid ( ParamTypes paramId ) : OpenCvSharp.ML.ParamGrid
paramId ParamTypes SVM parameters IDs that must be one of the SVM::ParamTypes. /// The grid is generated for the parameter with this ID.
Результат OpenCvSharp.ML.ParamGrid

GetSupportVectors() публичный Метод

Retrieves all the support vectors
public GetSupportVectors ( ) : Mat
Результат Mat

SVM() защищенный Метод

Creates instance by raw pointer cv::ml::SVM*
protected SVM ( IntPtr p ) : System
p System.IntPtr
Результат System

SetCustomKernel() публичный Метод

Initialize with custom kernel.
public SetCustomKernel ( Kernel kernel ) : void
kernel Kernel
Результат void

TrainAuto() публичный Метод

Trains an %SVM with optimal parameters.
public TrainAuto ( OpenCvSharp.ML.TrainData data, int kFold = 10, OpenCvSharp.ML.ParamGrid cGrid = null, OpenCvSharp.ML.ParamGrid gammaGrid = null, OpenCvSharp.ML.ParamGrid pGrid = null, OpenCvSharp.ML.ParamGrid nuGrid = null, OpenCvSharp.ML.ParamGrid coeffGrid = null, OpenCvSharp.ML.ParamGrid degreeGrid = null, bool balanced = false ) : bool
data OpenCvSharp.ML.TrainData the training data that can be constructed using /// TrainData::create or TrainData::loadFromCSV.
kFold int Cross-validation parameter. The training set is divided into kFold subsets. /// One subset is used to test the model, the others form the train set. So, the %SVM algorithm is /// executed kFold times.
cGrid OpenCvSharp.ML.ParamGrid grid for C
gammaGrid OpenCvSharp.ML.ParamGrid grid for gamma
pGrid OpenCvSharp.ML.ParamGrid grid for p
nuGrid OpenCvSharp.ML.ParamGrid grid for nu
coeffGrid OpenCvSharp.ML.ParamGrid grid for coeff
degreeGrid OpenCvSharp.ML.ParamGrid grid for degree
balanced bool If true and the problem is 2-class classification then the method creates /// more balanced cross-validation subsets that is proportions between classes in subsets are close /// to such proportion in the whole train dataset.
Результат bool