C# Класс MCAEmotiv.Classification.Classifiers

Extension methods for Classifiers
Показать файл Открыть проект

Открытые методы

Метод Описание
AccuracyOn ( this classifier, IEnumerable labeledExamples ) : double

Computes the classifier's accuracy in predicting the set of examples

AsOnlineClassifier ( this classifier ) : IOnlineClassifier

Wraps the classifier in an online classifier which works by storing all input examples and retraining the classifier on the stored examples as well as the new examples on each call to TrainMore

ErrorOn ( this classifier, IEnumerable labeledExamples ) : double

Computes the classifier's error in predicting the set of examples

IsNegative ( this classifier, Example example ) : bool

As classifier.IsNegative(classifier, example.Class)

IsNegative ( this classifier, int cls ) : bool

Does cls currently map to a negative example in this classifier?

IsPositive ( this classifier, Example example ) : bool

As classifier.IsPositive(classifier, example.Class)

IsPositive ( this classifier, int cls ) : bool

Does cls currently map to a positive example in this classifier?

Predict ( this classifier, IEnumerable examples ) : IEnumerable>

Returns a Trio of (example, predicted class, confidence) for each example

Predict ( this classifier, Example example ) : int

Predict without the confidence parameter

TrainMore ( this classifier, Example labeledExample ) : void

TrainMore, but with a single example

Описание методов

AccuracyOn() публичный статический Метод

Computes the classifier's accuracy in predicting the set of examples
public static AccuracyOn ( this classifier, IEnumerable labeledExamples ) : double
classifier this
labeledExamples IEnumerable
Результат double

AsOnlineClassifier() публичный статический Метод

Wraps the classifier in an online classifier which works by storing all input examples and retraining the classifier on the stored examples as well as the new examples on each call to TrainMore
public static AsOnlineClassifier ( this classifier ) : IOnlineClassifier
classifier this
Результат IOnlineClassifier

ErrorOn() публичный статический Метод

Computes the classifier's error in predicting the set of examples
public static ErrorOn ( this classifier, IEnumerable labeledExamples ) : double
classifier this
labeledExamples IEnumerable
Результат double

IsNegative() публичный статический Метод

As classifier.IsNegative(classifier, example.Class)
public static IsNegative ( this classifier, Example example ) : bool
classifier this
example Example
Результат bool

IsNegative() публичный статический Метод

Does cls currently map to a negative example in this classifier?
public static IsNegative ( this classifier, int cls ) : bool
classifier this
cls int
Результат bool

IsPositive() публичный статический Метод

As classifier.IsPositive(classifier, example.Class)
public static IsPositive ( this classifier, Example example ) : bool
classifier this
example Example
Результат bool

IsPositive() публичный статический Метод

Does cls currently map to a positive example in this classifier?
public static IsPositive ( this classifier, int cls ) : bool
classifier this
cls int
Результат bool

Predict() публичный статический Метод

Returns a Trio of (example, predicted class, confidence) for each example
public static Predict ( this classifier, IEnumerable examples ) : IEnumerable>
classifier this
examples IEnumerable
Результат IEnumerable>

Predict() публичный статический Метод

Predict without the confidence parameter
public static Predict ( this classifier, Example example ) : int
classifier this
example Example
Результат int

TrainMore() публичный статический Метод

TrainMore, but with a single example
public static TrainMore ( this classifier, Example labeledExample ) : void
classifier this
labeledExample Example
Результат void