C# Класс FannWrapperDouble.neural_net

Наследование: global::System.IDisposable
Показать файл Открыть проект Примеры использования класса

Защищенные свойства (Protected)

Свойство Тип Описание
swigCMemOwn bool

Открытые методы

Метод Описание
Dispose ( ) : void
cascadetrain_on_data ( training_data data, uint max_neurons, uint neurons_between_reports, float desired_error ) : void
cascadetrain_on_file ( string filename, uint max_neurons, uint neurons_between_reports, float desired_error ) : void
clear_scaling_params ( ) : bool
copy_from_struct_fann ( SWIGTYPE_p_fann other ) : void
create_from_file ( string configuration_file ) : bool
create_shortcut ( uint num_layers ) : bool
create_shortcut_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
create_sparse ( float connection_rate, uint num_layers ) : bool
create_sparse_array ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
create_standard ( uint num_layers ) : bool
create_standard_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
descale_input_ ( double descale_vector ) : void
descale_output_ ( double descale_vector ) : void
descale_train ( training_data data ) : void
destroy ( ) : void
disable_seed_rand ( ) : void
enable_seed_rand ( ) : void
get_MSE ( ) : float
get_activation_function ( int layer, int neuron ) : ActivationFunction
get_activation_steepness ( int layer, int neuron ) : double
get_bias_array ( SWIGTYPE_p_unsigned_int bias ) : void
get_bit_fail ( ) : uint
get_bit_fail_limit ( ) : double
get_cascade_activation_functions ( ) : SWIGTYPE_p_FANN__activation_function_enum
get_cascade_activation_functions_count ( ) : uint
get_cascade_activation_steepnesses ( ) : SWIGTYPE_p_double
get_cascade_activation_steepnesses_count ( ) : uint
get_cascade_candidate_change_fraction ( ) : float
get_cascade_candidate_limit ( ) : double
get_cascade_candidate_stagnation_epochs ( ) : uint
get_cascade_max_cand_epochs ( ) : uint
get_cascade_max_out_epochs ( ) : uint
get_cascade_num_candidate_groups ( ) : uint
get_cascade_num_candidates ( ) : uint
get_cascade_output_change_fraction ( ) : float
get_cascade_output_stagnation_epochs ( ) : uint
get_cascade_weight_multiplier ( ) : double
get_connection_array ( Connection connections ) : void
get_connection_rate ( ) : float
get_errno ( ) : uint
get_errstr ( ) : string
get_layer_array ( SWIGTYPE_p_unsigned_int layers ) : void
get_learning_momentum ( ) : float
get_learning_rate ( ) : float
get_network_type ( ) : NetworkType
get_num_input ( ) : uint
get_num_layers ( ) : uint
get_num_output ( ) : uint
get_quickprop_decay ( ) : float
get_quickprop_mu ( ) : float
get_rprop_decrease_factor ( ) : float
get_rprop_delta_max ( ) : float
get_rprop_delta_min ( ) : float
get_rprop_delta_zero ( ) : float
get_rprop_increase_factor ( ) : float
get_sarprop_step_error_shift ( ) : float
get_sarprop_step_error_threshold_factor ( ) : float
get_sarprop_temperature ( ) : float
get_sarprop_weight_decay_shift ( ) : float
get_total_connections ( ) : uint
get_total_neurons ( ) : uint
get_train_error_function ( ) : ErrorFunction
get_train_stop_function ( ) : StopFunction
get_training_algorithm ( ) : TrainingAlgorithm
init_weights ( training_data data ) : void
neural_net ( ) : FANNCSharp
neural_net ( NetworkType net_type, uint num_layers ) : FANNCSharp
neural_net ( NetworkType net_type, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
neural_net ( SWIGTYPE_p_fann other ) : FANNCSharp
neural_net ( float connection_rate, uint num_layers ) : FANNCSharp
neural_net ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
neural_net ( neural_net other ) : FANNCSharp
neural_net ( string configuration_file ) : FANNCSharp
print_connections ( ) : void
print_error ( ) : void
print_parameters ( ) : void
randomize_weights ( double min_weight, double max_weight ) : void
reset_MSE ( ) : void
reset_errno ( ) : void
reset_errstr ( ) : void
run ( double input ) : SWIGTYPE_p_double
save ( string configuration_file ) : bool
save_to_fixed ( string configuration_file ) : int
scale_input ( SWIGTYPE_p_double input_vector ) : void
scale_output ( SWIGTYPE_p_double output_vector ) : void
scale_train ( training_data data ) : void
set_activation_function ( ActivationFunction activation_function, int layer, int neuron ) : void
set_activation_function_hidden ( ActivationFunction activation_function ) : void
set_activation_function_layer ( ActivationFunction activation_function, int layer ) : void
set_activation_function_output ( ActivationFunction activation_function ) : void
set_activation_steepness ( double steepness, int layer, int neuron ) : void
set_activation_steepness_hidden ( double steepness ) : void
set_activation_steepness_layer ( double steepness, int layer ) : void
set_activation_steepness_output ( double steepness ) : void
set_bit_fail_limit ( double bit_fail_limit ) : void
set_callback ( global callback, global user_data ) : void
set_cascade_activation_functions ( SWIGTYPE_p_FANN__activation_function_enum cascade_activation_functions, uint cascade_activation_functions_count ) : void
set_cascade_activation_steepnesses ( double cascade_activation_steepnesses, uint cascade_activation_steepnesses_count ) : void
set_cascade_candidate_change_fraction ( float cascade_candidate_change_fraction ) : void
set_cascade_candidate_limit ( double cascade_candidate_limit ) : void
set_cascade_candidate_stagnation_epochs ( uint cascade_candidate_stagnation_epochs ) : void
set_cascade_max_cand_epochs ( uint cascade_max_cand_epochs ) : void
set_cascade_max_out_epochs ( uint cascade_max_out_epochs ) : void
set_cascade_num_candidate_groups ( uint cascade_num_candidate_groups ) : void
set_cascade_output_change_fraction ( float cascade_output_change_fraction ) : void
set_cascade_output_stagnation_epochs ( uint cascade_output_stagnation_epochs ) : void
set_cascade_weight_multiplier ( double cascade_weight_multiplier ) : void
set_error_log ( SWIGTYPE_p_FILE log_file ) : void
set_input_scaling_params ( training_data data, float new_input_min, float new_input_max ) : bool
set_learning_momentum ( float learning_momentum ) : void
set_learning_rate ( float learning_rate ) : void
set_output_scaling_params ( training_data data, float new_output_min, float new_output_max ) : bool
set_quickprop_decay ( float quickprop_decay ) : void
set_quickprop_mu ( float quickprop_mu ) : void
set_rprop_decrease_factor ( float rprop_decrease_factor ) : void
set_rprop_delta_max ( float rprop_delta_max ) : void
set_rprop_delta_min ( float rprop_delta_min ) : void
set_rprop_delta_zero ( float rprop_delta_zero ) : void
set_rprop_increase_factor ( float rprop_increase_factor ) : void
set_sarprop_step_error_shift ( float sarprop_step_error_shift ) : void
set_sarprop_step_error_threshold_factor ( float sarprop_step_error_threshold_factor ) : void
set_sarprop_temperature ( float sarprop_temperature ) : void
set_sarprop_weight_decay_shift ( float sarprop_weight_decay_shift ) : void
set_scaling_params ( training_data data, float new_input_min, float new_input_max, float new_output_min, float new_output_max ) : bool
set_train_error_function ( ErrorFunction train_error_function ) : void
set_train_stop_function ( StopFunction train_stop_function ) : void
set_training_algorithm ( TrainingAlgorithm training_algorithm ) : void
set_weight ( uint from_neuron, uint to_neuron, double weight ) : void
set_weight_array ( Connection connections, uint num_connections ) : void
test ( double input, double desired_output ) : SWIGTYPE_p_double
test_data ( training_data data ) : float
to_fann ( ) : SWIGTYPE_p_fann
train ( double input, double desired_output ) : void
train_epoch ( training_data data ) : float
train_on_data ( training_data data, uint max_epochs, uint epochs_between_reports, float desired_error ) : void
train_on_file ( string filename, uint max_epochs, uint epochs_between_reports, float desired_error ) : void

Приватные методы

Метод Описание
getCPtr ( neural_net obj ) : global::System.Runtime.InteropServices.HandleRef
neural_net ( global cPtr, bool cMemoryOwn ) : FANNCSharp

Описание методов

Dispose() публичный Метод

public Dispose ( ) : void
Результат void

cascadetrain_on_data() публичный Метод

public cascadetrain_on_data ( training_data data, uint max_neurons, uint neurons_between_reports, float desired_error ) : void
data training_data
max_neurons uint
neurons_between_reports uint
desired_error float
Результат void

cascadetrain_on_file() публичный Метод

public cascadetrain_on_file ( string filename, uint max_neurons, uint neurons_between_reports, float desired_error ) : void
filename string
max_neurons uint
neurons_between_reports uint
desired_error float
Результат void

clear_scaling_params() публичный Метод

public clear_scaling_params ( ) : bool
Результат bool

copy_from_struct_fann() публичный Метод

public copy_from_struct_fann ( SWIGTYPE_p_fann other ) : void
other FANNCSharp.SWIGTYPE_p_fann
Результат void

create_from_file() публичный Метод

public create_from_file ( string configuration_file ) : bool
configuration_file string
Результат bool

create_shortcut() публичный Метод

public create_shortcut ( uint num_layers ) : bool
num_layers uint
Результат bool

create_shortcut_array() публичный Метод

public create_shortcut_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат bool

create_sparse() публичный Метод

public create_sparse ( float connection_rate, uint num_layers ) : bool
connection_rate float
num_layers uint
Результат bool

create_sparse_array() публичный Метод

public create_sparse_array ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
connection_rate float
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат bool

create_standard() публичный Метод

public create_standard ( uint num_layers ) : bool
num_layers uint
Результат bool

create_standard_array() публичный Метод

public create_standard_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат bool

descale_input_() публичный Метод

public descale_input_ ( double descale_vector ) : void
descale_vector double
Результат void

descale_output_() публичный Метод

public descale_output_ ( double descale_vector ) : void
descale_vector double
Результат void

descale_train() публичный Метод

public descale_train ( training_data data ) : void
data training_data
Результат void

destroy() публичный Метод

public destroy ( ) : void
Результат void

disable_seed_rand() публичный Метод

public disable_seed_rand ( ) : void
Результат void

enable_seed_rand() публичный Метод

public enable_seed_rand ( ) : void
Результат void

get_MSE() публичный Метод

public get_MSE ( ) : float
Результат float

get_activation_function() публичный Метод

public get_activation_function ( int layer, int neuron ) : ActivationFunction
layer int
neuron int
Результат ActivationFunction

get_activation_steepness() публичный Метод

public get_activation_steepness ( int layer, int neuron ) : double
layer int
neuron int
Результат double

get_bias_array() публичный Метод

public get_bias_array ( SWIGTYPE_p_unsigned_int bias ) : void
bias FANNCSharp.SWIGTYPE_p_unsigned_int
Результат void

get_bit_fail() публичный Метод

public get_bit_fail ( ) : uint
Результат uint

get_bit_fail_limit() публичный Метод

public get_bit_fail_limit ( ) : double
Результат double

get_cascade_activation_functions() публичный Метод

public get_cascade_activation_functions ( ) : SWIGTYPE_p_FANN__activation_function_enum
Результат FANNCSharp.SWIGTYPE_p_FANN__activation_function_enum

get_cascade_activation_functions_count() публичный Метод

public get_cascade_activation_functions_count ( ) : uint
Результат uint

get_cascade_activation_steepnesses() публичный Метод

public get_cascade_activation_steepnesses ( ) : SWIGTYPE_p_double
Результат SWIGTYPE_p_double

get_cascade_activation_steepnesses_count() публичный Метод

public get_cascade_activation_steepnesses_count ( ) : uint
Результат uint

get_cascade_candidate_change_fraction() публичный Метод

public get_cascade_candidate_change_fraction ( ) : float
Результат float

get_cascade_candidate_limit() публичный Метод

public get_cascade_candidate_limit ( ) : double
Результат double

get_cascade_candidate_stagnation_epochs() публичный Метод

public get_cascade_candidate_stagnation_epochs ( ) : uint
Результат uint

get_cascade_max_cand_epochs() публичный Метод

public get_cascade_max_cand_epochs ( ) : uint
Результат uint

get_cascade_max_out_epochs() публичный Метод

public get_cascade_max_out_epochs ( ) : uint
Результат uint

get_cascade_num_candidate_groups() публичный Метод

public get_cascade_num_candidate_groups ( ) : uint
Результат uint

get_cascade_num_candidates() публичный Метод

public get_cascade_num_candidates ( ) : uint
Результат uint

get_cascade_output_change_fraction() публичный Метод

public get_cascade_output_change_fraction ( ) : float
Результат float

get_cascade_output_stagnation_epochs() публичный Метод

public get_cascade_output_stagnation_epochs ( ) : uint
Результат uint

get_cascade_weight_multiplier() публичный Метод

public get_cascade_weight_multiplier ( ) : double
Результат double

get_connection_array() публичный Метод

public get_connection_array ( Connection connections ) : void
connections Connection
Результат void

get_connection_rate() публичный Метод

public get_connection_rate ( ) : float
Результат float

get_errno() публичный Метод

public get_errno ( ) : uint
Результат uint

get_errstr() публичный Метод

public get_errstr ( ) : string
Результат string

get_layer_array() публичный Метод

public get_layer_array ( SWIGTYPE_p_unsigned_int layers ) : void
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат void

get_learning_momentum() публичный Метод

public get_learning_momentum ( ) : float
Результат float

get_learning_rate() публичный Метод

public get_learning_rate ( ) : float
Результат float

get_network_type() публичный Метод

public get_network_type ( ) : NetworkType
Результат NetworkType

get_num_input() публичный Метод

public get_num_input ( ) : uint
Результат uint

get_num_layers() публичный Метод

public get_num_layers ( ) : uint
Результат uint

get_num_output() публичный Метод

public get_num_output ( ) : uint
Результат uint

get_quickprop_decay() публичный Метод

public get_quickprop_decay ( ) : float
Результат float

get_quickprop_mu() публичный Метод

public get_quickprop_mu ( ) : float
Результат float

get_rprop_decrease_factor() публичный Метод

public get_rprop_decrease_factor ( ) : float
Результат float

get_rprop_delta_max() публичный Метод

public get_rprop_delta_max ( ) : float
Результат float

get_rprop_delta_min() публичный Метод

public get_rprop_delta_min ( ) : float
Результат float

get_rprop_delta_zero() публичный Метод

public get_rprop_delta_zero ( ) : float
Результат float

get_rprop_increase_factor() публичный Метод

public get_rprop_increase_factor ( ) : float
Результат float

get_sarprop_step_error_shift() публичный Метод

public get_sarprop_step_error_shift ( ) : float
Результат float

get_sarprop_step_error_threshold_factor() публичный Метод

public get_sarprop_step_error_threshold_factor ( ) : float
Результат float

get_sarprop_temperature() публичный Метод

public get_sarprop_temperature ( ) : float
Результат float

get_sarprop_weight_decay_shift() публичный Метод

public get_sarprop_weight_decay_shift ( ) : float
Результат float

get_total_connections() публичный Метод

public get_total_connections ( ) : uint
Результат uint

get_total_neurons() публичный Метод

public get_total_neurons ( ) : uint
Результат uint

get_train_error_function() публичный Метод

public get_train_error_function ( ) : ErrorFunction
Результат ErrorFunction

get_train_stop_function() публичный Метод

public get_train_stop_function ( ) : StopFunction
Результат StopFunction

get_training_algorithm() публичный Метод

public get_training_algorithm ( ) : TrainingAlgorithm
Результат TrainingAlgorithm

init_weights() публичный Метод

public init_weights ( training_data data ) : void
data training_data
Результат void

neural_net() публичный Метод

public neural_net ( ) : FANNCSharp
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( NetworkType net_type, uint num_layers ) : FANNCSharp
net_type NetworkType
num_layers uint
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( NetworkType net_type, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
net_type NetworkType
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( SWIGTYPE_p_fann other ) : FANNCSharp
other FANNCSharp.SWIGTYPE_p_fann
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( float connection_rate, uint num_layers ) : FANNCSharp
connection_rate float
num_layers uint
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
connection_rate float
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( neural_net other ) : FANNCSharp
other neural_net
Результат FANNCSharp

neural_net() публичный Метод

public neural_net ( string configuration_file ) : FANNCSharp
configuration_file string
Результат FANNCSharp

print_connections() публичный Метод

public print_connections ( ) : void
Результат void

print_error() публичный Метод

public print_error ( ) : void
Результат void

print_parameters() публичный Метод

public print_parameters ( ) : void
Результат void

randomize_weights() публичный Метод

public randomize_weights ( double min_weight, double max_weight ) : void
min_weight double
max_weight double
Результат void

reset_MSE() публичный Метод

public reset_MSE ( ) : void
Результат void

reset_errno() публичный Метод

public reset_errno ( ) : void
Результат void

reset_errstr() публичный Метод

public reset_errstr ( ) : void
Результат void

run() публичный Метод

public run ( double input ) : SWIGTYPE_p_double
input double
Результат SWIGTYPE_p_double

save() публичный Метод

public save ( string configuration_file ) : bool
configuration_file string
Результат bool

save_to_fixed() публичный Метод

public save_to_fixed ( string configuration_file ) : int
configuration_file string
Результат int

scale_input() публичный Метод

public scale_input ( SWIGTYPE_p_double input_vector ) : void
input_vector SWIGTYPE_p_double
Результат void

scale_output() публичный Метод

public scale_output ( SWIGTYPE_p_double output_vector ) : void
output_vector SWIGTYPE_p_double
Результат void

scale_train() публичный Метод

public scale_train ( training_data data ) : void
data training_data
Результат void

set_activation_function() публичный Метод

public set_activation_function ( ActivationFunction activation_function, int layer, int neuron ) : void
activation_function ActivationFunction
layer int
neuron int
Результат void

set_activation_function_hidden() публичный Метод

public set_activation_function_hidden ( ActivationFunction activation_function ) : void
activation_function ActivationFunction
Результат void

set_activation_function_layer() публичный Метод

public set_activation_function_layer ( ActivationFunction activation_function, int layer ) : void
activation_function ActivationFunction
layer int
Результат void

set_activation_function_output() публичный Метод

public set_activation_function_output ( ActivationFunction activation_function ) : void
activation_function ActivationFunction
Результат void

set_activation_steepness() публичный Метод

public set_activation_steepness ( double steepness, int layer, int neuron ) : void
steepness double
layer int
neuron int
Результат void

set_activation_steepness_hidden() публичный Метод

public set_activation_steepness_hidden ( double steepness ) : void
steepness double
Результат void

set_activation_steepness_layer() публичный Метод

public set_activation_steepness_layer ( double steepness, int layer ) : void
steepness double
layer int
Результат void

set_activation_steepness_output() публичный Метод

public set_activation_steepness_output ( double steepness ) : void
steepness double
Результат void

set_bit_fail_limit() публичный Метод

public set_bit_fail_limit ( double bit_fail_limit ) : void
bit_fail_limit double
Результат void

set_callback() публичный Метод

public set_callback ( global callback, global user_data ) : void
callback global
user_data global
Результат void

set_cascade_activation_functions() публичный Метод

public set_cascade_activation_functions ( SWIGTYPE_p_FANN__activation_function_enum cascade_activation_functions, uint cascade_activation_functions_count ) : void
cascade_activation_functions FANNCSharp.SWIGTYPE_p_FANN__activation_function_enum
cascade_activation_functions_count uint
Результат void

set_cascade_activation_steepnesses() публичный Метод

public set_cascade_activation_steepnesses ( double cascade_activation_steepnesses, uint cascade_activation_steepnesses_count ) : void
cascade_activation_steepnesses double
cascade_activation_steepnesses_count uint
Результат void

set_cascade_candidate_change_fraction() публичный Метод

public set_cascade_candidate_change_fraction ( float cascade_candidate_change_fraction ) : void
cascade_candidate_change_fraction float
Результат void

set_cascade_candidate_limit() публичный Метод

public set_cascade_candidate_limit ( double cascade_candidate_limit ) : void
cascade_candidate_limit double
Результат void

set_cascade_candidate_stagnation_epochs() публичный Метод

public set_cascade_candidate_stagnation_epochs ( uint cascade_candidate_stagnation_epochs ) : void
cascade_candidate_stagnation_epochs uint
Результат void

set_cascade_max_cand_epochs() публичный Метод

public set_cascade_max_cand_epochs ( uint cascade_max_cand_epochs ) : void
cascade_max_cand_epochs uint
Результат void

set_cascade_max_out_epochs() публичный Метод

public set_cascade_max_out_epochs ( uint cascade_max_out_epochs ) : void
cascade_max_out_epochs uint
Результат void

set_cascade_num_candidate_groups() публичный Метод

public set_cascade_num_candidate_groups ( uint cascade_num_candidate_groups ) : void
cascade_num_candidate_groups uint
Результат void

set_cascade_output_change_fraction() публичный Метод

public set_cascade_output_change_fraction ( float cascade_output_change_fraction ) : void
cascade_output_change_fraction float
Результат void

set_cascade_output_stagnation_epochs() публичный Метод

public set_cascade_output_stagnation_epochs ( uint cascade_output_stagnation_epochs ) : void
cascade_output_stagnation_epochs uint
Результат void

set_cascade_weight_multiplier() публичный Метод

public set_cascade_weight_multiplier ( double cascade_weight_multiplier ) : void
cascade_weight_multiplier double
Результат void

set_error_log() публичный Метод

public set_error_log ( SWIGTYPE_p_FILE log_file ) : void
log_file FANNCSharp.SWIGTYPE_p_FILE
Результат void

set_input_scaling_params() публичный Метод

public set_input_scaling_params ( training_data data, float new_input_min, float new_input_max ) : bool
data training_data
new_input_min float
new_input_max float
Результат bool

set_learning_momentum() публичный Метод

public set_learning_momentum ( float learning_momentum ) : void
learning_momentum float
Результат void

set_learning_rate() публичный Метод

public set_learning_rate ( float learning_rate ) : void
learning_rate float
Результат void

set_output_scaling_params() публичный Метод

public set_output_scaling_params ( training_data data, float new_output_min, float new_output_max ) : bool
data training_data
new_output_min float
new_output_max float
Результат bool

set_quickprop_decay() публичный Метод

public set_quickprop_decay ( float quickprop_decay ) : void
quickprop_decay float
Результат void

set_quickprop_mu() публичный Метод

public set_quickprop_mu ( float quickprop_mu ) : void
quickprop_mu float
Результат void

set_rprop_decrease_factor() публичный Метод

public set_rprop_decrease_factor ( float rprop_decrease_factor ) : void
rprop_decrease_factor float
Результат void

set_rprop_delta_max() публичный Метод

public set_rprop_delta_max ( float rprop_delta_max ) : void
rprop_delta_max float
Результат void

set_rprop_delta_min() публичный Метод

public set_rprop_delta_min ( float rprop_delta_min ) : void
rprop_delta_min float
Результат void

set_rprop_delta_zero() публичный Метод

public set_rprop_delta_zero ( float rprop_delta_zero ) : void
rprop_delta_zero float
Результат void

set_rprop_increase_factor() публичный Метод

public set_rprop_increase_factor ( float rprop_increase_factor ) : void
rprop_increase_factor float
Результат void

set_sarprop_step_error_shift() публичный Метод

public set_sarprop_step_error_shift ( float sarprop_step_error_shift ) : void
sarprop_step_error_shift float
Результат void

set_sarprop_step_error_threshold_factor() публичный Метод

public set_sarprop_step_error_threshold_factor ( float sarprop_step_error_threshold_factor ) : void
sarprop_step_error_threshold_factor float
Результат void

set_sarprop_temperature() публичный Метод

public set_sarprop_temperature ( float sarprop_temperature ) : void
sarprop_temperature float
Результат void

set_sarprop_weight_decay_shift() публичный Метод

public set_sarprop_weight_decay_shift ( float sarprop_weight_decay_shift ) : void
sarprop_weight_decay_shift float
Результат void

set_scaling_params() публичный Метод

public set_scaling_params ( training_data data, float new_input_min, float new_input_max, float new_output_min, float new_output_max ) : bool
data training_data
new_input_min float
new_input_max float
new_output_min float
new_output_max float
Результат bool

set_train_error_function() публичный Метод

public set_train_error_function ( ErrorFunction train_error_function ) : void
train_error_function ErrorFunction
Результат void

set_train_stop_function() публичный Метод

public set_train_stop_function ( StopFunction train_stop_function ) : void
train_stop_function StopFunction
Результат void

set_training_algorithm() публичный Метод

public set_training_algorithm ( TrainingAlgorithm training_algorithm ) : void
training_algorithm TrainingAlgorithm
Результат void

set_weight() публичный Метод

public set_weight ( uint from_neuron, uint to_neuron, double weight ) : void
from_neuron uint
to_neuron uint
weight double
Результат void

set_weight_array() публичный Метод

public set_weight_array ( Connection connections, uint num_connections ) : void
connections Connection
num_connections uint
Результат void

test() публичный Метод

public test ( double input, double desired_output ) : SWIGTYPE_p_double
input double
desired_output double
Результат SWIGTYPE_p_double

test_data() публичный Метод

public test_data ( training_data data ) : float
data training_data
Результат float

to_fann() публичный Метод

public to_fann ( ) : SWIGTYPE_p_fann
Результат FANNCSharp.SWIGTYPE_p_fann

train() публичный Метод

public train ( double input, double desired_output ) : void
input double
desired_output double
Результат void

train_epoch() публичный Метод

public train_epoch ( training_data data ) : float
data training_data
Результат float

train_on_data() публичный Метод

public train_on_data ( training_data data, uint max_epochs, uint epochs_between_reports, float desired_error ) : void
data training_data
max_epochs uint
epochs_between_reports uint
desired_error float
Результат void

train_on_file() публичный Метод

public train_on_file ( string filename, uint max_epochs, uint epochs_between_reports, float desired_error ) : void
filename string
max_epochs uint
epochs_between_reports uint
desired_error float
Результат void

Описание свойств

swigCMemOwn защищенное свойство

protected bool swigCMemOwn
Результат bool