C# Класс Encog.MathUtil.Matrices.Decomposition.LUDecomposition

LU Decomposition. For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n unit lower triangular matrix L, an n-by-n upper triangular matrix U, and a permutation vector piv of length m so that A(piv,:) = L*U. If m less than n, then L is m-by-m and U is m-by-n. The LU decompostion with pivoting always exists, even if the matrix is singular, so the constructor will never fail. The primary use of the LU decomposition is in the solution of square systems of simultaneous linear equations. This will fail if isNonsingular() returns false. This file based on a class from the public domain JAMA package. http://math.nist.gov/javanumerics/jama/
Показать файл Открыть проект Примеры использования класса

Открытые методы

Метод Описание
Det ( ) : double

Determinant

Inverse ( ) : double[][]

Solves a set of equation systems of type A * X = B.

LUDecomposition ( System.Matrix A ) : System

LU Decomposition

Solve ( System.Matrix B ) : System.Matrix

Solve A*X = B

Solve ( double value_ren ) : double[]

Solve the matrix for a 1d array.

Описание методов

Det() публичный Метод

Determinant
public Det ( ) : double
Результат double

Inverse() публичный Метод

Solves a set of equation systems of type A * X = B.
public Inverse ( ) : double[][]
Результат double[][]

LUDecomposition() публичный Метод

LU Decomposition
public LUDecomposition ( System.Matrix A ) : System
A System.Matrix Rectangular matrix
Результат System

Solve() публичный Метод

Solve A*X = B
public Solve ( System.Matrix B ) : System.Matrix
B System.Matrix A Matrix with as many rows as A and any number of columns.
Результат System.Matrix

Solve() публичный Метод

Solve the matrix for a 1d array.
public Solve ( double value_ren ) : double[]
value_ren double The value to solve for.
Результат double[]