C# Класс Accord.Neuro.Networks.DeepBeliefNetwork

Наследование: ActivationNetwork
Показать файл Открыть проект Примеры использования класса

Открытые методы

Метод Описание
Compute ( double input ) : double[]

Computes the network's outputs for a given input.

Compute ( double input, int layerIndex ) : double[]

Computes the network's outputs for a given input.

CreateGaussianBernoulli ( int inputsCount ) : DeepBeliefNetwork

Creates a Gaussian-Bernoulli network.

CreateMixedNetwork ( IStochasticFunction visible, IStochasticFunction hidden, int inputsCount ) : DeepBeliefNetwork

Creates a Mixed-Bernoulli network.

DeepBeliefNetwork ( IStochasticFunction function, int inputsCount ) : System

Creates a new DeepBeliefNetwork.

DeepBeliefNetwork ( int inputsCount ) : System

Creates a new DeepBeliefNetwork.

GenerateInput ( double output ) : double[]

Samples an input vector from the network given an output vector.

GenerateOutput ( double input ) : double[]

Samples an output vector from the network given an input vector.

GenerateOutput ( double input, int layerIndex ) : double[]

Samples an output vector from the network given an input vector.

Load ( Stream stream ) : DeepBeliefNetwork

Loads a network from a stream.

Load ( string path ) : DeepBeliefNetwork

Loads a network from a file.

Pop ( ) : void

Removes the last layer from the network.

Push ( RestrictedBoltzmannMachine network ) : void

Stacks a new Boltzmann Machine at the end of this network.

Push ( int neurons ) : void

Inserts a new layer at the end of this network.

Push ( int neurons, IStochasticFunction function ) : void

Inserts a new layer at the end of this network.

Push ( int neurons, IStochasticFunction visibleFunction, IStochasticFunction hiddenFunction ) : void

Inserts a new layer at the end of this network.

Reconstruct ( double output ) : double[]

Reconstructs a input vector for a given output.

Reconstruct ( double output, int layerIndex ) : double[]

Reconstructs a input vector using the output vector of a given layer.

Save ( Stream stream ) : void

Saves the network to a stream.

Save ( string path ) : void

Saves the network to a stream.

UpdateVisibleWeights ( ) : void

Updates the weights of the visible layers by copying the reverse of the weights in the hidden layers.

Описание методов

Compute() публичный Метод

Computes the network's outputs for a given input.
public Compute ( double input ) : double[]
input double The input vector.
Результат double[]

Compute() публичный Метод

Computes the network's outputs for a given input.
public Compute ( double input, int layerIndex ) : double[]
input double The input vector.
layerIndex int The index of the layer.
Результат double[]

CreateGaussianBernoulli() публичный статический Метод

Creates a Gaussian-Bernoulli network.
public static CreateGaussianBernoulli ( int inputsCount ) : DeepBeliefNetwork
inputsCount int The number of inputs for the network.
Результат DeepBeliefNetwork

CreateMixedNetwork() публичный статический Метод

Creates a Mixed-Bernoulli network.
public static CreateMixedNetwork ( IStochasticFunction visible, IStochasticFunction hidden, int inputsCount ) : DeepBeliefNetwork
visible IStochasticFunction The to be used in the first visible layer.
hidden IStochasticFunction The to be used in all other layers.
inputsCount int The number of inputs for the network.
Результат DeepBeliefNetwork

DeepBeliefNetwork() публичный Метод

Creates a new DeepBeliefNetwork.
public DeepBeliefNetwork ( IStochasticFunction function, int inputsCount ) : System
function IStochasticFunction The activation function to be used in the network neurons.
inputsCount int The number of inputs for the network.
Результат System

DeepBeliefNetwork() публичный Метод

Creates a new DeepBeliefNetwork.
public DeepBeliefNetwork ( int inputsCount ) : System
inputsCount int The number of inputs for the network.
Результат System

GenerateInput() публичный Метод

Samples an input vector from the network given an output vector.
public GenerateInput ( double output ) : double[]
output double An output vector.
Результат double[]

GenerateOutput() публичный Метод

Samples an output vector from the network given an input vector.
public GenerateOutput ( double input ) : double[]
input double An input vector.
Результат double[]

GenerateOutput() публичный Метод

Samples an output vector from the network given an input vector.
public GenerateOutput ( double input, int layerIndex ) : double[]
input double An input vector.
layerIndex int The index of the layer.
Результат double[]

Load() публичный статический Метод

Loads a network from a stream.
public static Load ( Stream stream ) : DeepBeliefNetwork
stream Stream The network from which the machine is to be deserialized.
Результат DeepBeliefNetwork

Load() публичный статический Метод

Loads a network from a file.
public static Load ( string path ) : DeepBeliefNetwork
path string The path to the file from which the network is to be deserialized.
Результат DeepBeliefNetwork

Pop() публичный Метод

Removes the last layer from the network.
public Pop ( ) : void
Результат void

Push() публичный Метод

Stacks a new Boltzmann Machine at the end of this network.
public Push ( RestrictedBoltzmannMachine network ) : void
network RestrictedBoltzmannMachine The machine to be added to the network.
Результат void

Push() публичный Метод

Inserts a new layer at the end of this network.
public Push ( int neurons ) : void
neurons int The number of neurons in the new layer.
Результат void

Push() публичный Метод

Inserts a new layer at the end of this network.
public Push ( int neurons, IStochasticFunction function ) : void
neurons int The number of neurons in the new layer.
function IStochasticFunction The activation function which should be used by the neurons.
Результат void

Push() публичный Метод

Inserts a new layer at the end of this network.
public Push ( int neurons, IStochasticFunction visibleFunction, IStochasticFunction hiddenFunction ) : void
neurons int The number of neurons in the layer.
visibleFunction IStochasticFunction The activation function which should be used by the visible neurons.
hiddenFunction IStochasticFunction The activation function which should be used by the hidden neurons.
Результат void

Reconstruct() публичный Метод

Reconstructs a input vector for a given output.
public Reconstruct ( double output ) : double[]
output double The output vector.
Результат double[]

Reconstruct() публичный Метод

Reconstructs a input vector using the output vector of a given layer.
public Reconstruct ( double output, int layerIndex ) : double[]
output double The output vector.
layerIndex int The index of the layer.
Результат double[]

Save() публичный Метод

Saves the network to a stream.
public Save ( Stream stream ) : void
stream Stream The stream to which the network is to be serialized.
Результат void

Save() публичный Метод

Saves the network to a stream.
public Save ( string path ) : void
path string The file path to which the network is to be serialized.
Результат void

UpdateVisibleWeights() публичный Метод

Updates the weights of the visible layers by copying the reverse of the weights in the hidden layers.
public UpdateVisibleWeights ( ) : void
Результат void