Method | Description | |
---|---|---|
CalculateError ( IMLDataSet data ) : double |
Calculate the error for this SVM.
|
|
Classify ( IMLData input ) : int | ||
Compute ( IMLData input ) : IMLData |
Compute the output for the given input.
|
|
MakeSparse ( IMLData data ) : Encog.MathUtil.LIBSVM.svm_node[] |
Convert regular Encog MLData into the "sparse" data needed by an SVM.
|
|
SupportVectorMachine ( ) : System |
Construct the SVM.
|
|
SupportVectorMachine ( int theInputCount, SVMType svmType, KernelType kernelType ) : System |
Construct a SVM network.
|
|
SupportVectorMachine ( int theInputCount, bool regression ) : System |
Construct an SVM network. For regression it will use an epsilon support vector. Both types will use an RBF kernel.
|
|
SupportVectorMachine ( |
Construct a SVM from a model.
|
|
UpdateProperties ( ) : void |
Not needed, no properties to update.
|
public CalculateError ( IMLDataSet data ) : double | ||
data | IMLDataSet | The training set. |
return | double |
public Compute ( IMLData input ) : IMLData | ||
input | IMLData | The input to the SVM. |
return | IMLData |
public MakeSparse ( IMLData data ) : Encog.MathUtil.LIBSVM.svm_node[] | ||
data | IMLData | The data to convert. |
return | Encog.MathUtil.LIBSVM.svm_node[] |
public SupportVectorMachine ( int theInputCount, SVMType svmType, KernelType kernelType ) : System | ||
theInputCount | int | The input count. |
svmType | SVMType | The type of SVM. |
kernelType | KernelType | The SVM kernal type. |
return | System |
public SupportVectorMachine ( int theInputCount, bool regression ) : System | ||
theInputCount | int | The input count. |
regression | bool | True if this network is used for regression. |
return | System |
public SupportVectorMachine ( |
||
theModel | The model. | |
return | System |