프로퍼티 | 타입 | 설명 | |
---|---|---|---|
DaimlerPeopleDetector | float[] | ||
DefaultPeopleDetector | float[] | ||
SizeOf | int |
메소드 | 설명 | |
---|---|---|
CheckDetectorSize ( ) : bool |
|
|
Compute ( OpenCvSharp.Mat img, Size winStride = null, Size padding = null, System.Point locations = null ) : float[] |
|
|
ComputeGradient ( OpenCvSharp.Mat img, OpenCvSharp.Mat grad, OpenCvSharp.Mat angleOfs, Size paddingTL = null, Size paddingBR = null ) : void |
|
|
Detect ( OpenCvSharp.Mat img, double hitThreshold, Size winStride = null, Size padding = null, System.Point searchLocations = null ) : System.Point[] |
Performs object detection without a multi-scale window.
|
|
Detect ( OpenCvSharp.Mat img, double &weights, double hitThreshold, Size winStride = null, Size padding = null, System.Point searchLocations = null ) : System.Point[] |
Performs object detection without a multi-scale window.
|
|
DetectMultiScale ( OpenCvSharp.Mat img, double hitThreshold, Size winStride = null, Size padding = null, double scale = 1.05, int groupThreshold = 2 ) : Rect[] |
Performs object detection with a multi-scale window.
|
|
DetectMultiScale ( OpenCvSharp.Mat img, double &foundWeights, double hitThreshold, Size winStride = null, Size padding = null, double scale = 1.05, int groupThreshold = 2 ) : Rect[] |
Performs object detection with a multi-scale window.
|
|
DetectMultiScaleROI ( OpenCvSharp.Mat img, Rect &foundLocations, |
evaluate specified ROI and return confidence value for each location in multiple scales
|
|
DetectROI ( OpenCvSharp.Mat img, System.Point locations, System.Point &foundLocations, double &confidences, double hitThreshold, Size winStride = null, Size padding = null ) : void |
evaluate specified ROI and return confidence value for each location
|
|
GetDaimlerPeopleDetector ( ) : float[] |
This method returns 1981 SVM coeffs obtained from daimler's base. To use these coeffs the detection window size should be (48,96)
|
|
GetDefaultPeopleDetector ( ) : float[] |
Returns coefficients of the classifier trained for people detection (for default window size).
|
|
GetDescriptorSize ( ) : int |
|
|
GetWinSigma ( ) : double |
|
|
GroupRectangles ( Rect &rectList, double &weights, int groupThreshold, double eps ) : void |
|
|
HOGDescriptor ( ) : System |
Default constructor
|
|
HOGDescriptor ( |
Initializes from pointer
|
|
HOGDescriptor ( Size winSize = null, Size blockSize = null, Size blockStride = null, Size cellSize = null, int nbins = 9, int derivAperture = 1, double winSigma = -1, HistogramNormType histogramNormType = HistogramNormType.L2Hys, double l2HysThreshold = 0.2, bool gammaCorrection = true, int nlevels = DefaultNlevels ) : System |
Creates the HOG descriptor and detector.
|
|
HOGDescriptor ( string fileName ) : System |
|
|
Load ( string fileName, string objName = null ) : bool |
|
|
ReadALTModel ( string modelFile ) : void |
read/parse Dalal's alt model file
|
|
Save ( string fileName, string objName = null ) : void |
|
|
SetSVMDetector ( float svmDetector ) : void |
|
메소드 | 설명 | |
---|---|---|
Dispose ( bool disposing ) : void |
Clean up any resources being used.
|
public Compute ( OpenCvSharp.Mat img, Size winStride = null, Size padding = null, System.Point locations = null ) : float[] | ||
img | OpenCvSharp.Mat | |
winStride | Size | |
padding | Size | |
locations | System.Point | |
리턴 | float[] |
public ComputeGradient ( OpenCvSharp.Mat img, OpenCvSharp.Mat grad, OpenCvSharp.Mat angleOfs, Size paddingTL = null, Size paddingBR = null ) : void | ||
img | OpenCvSharp.Mat | |
grad | OpenCvSharp.Mat | |
angleOfs | OpenCvSharp.Mat | |
paddingTL | Size | |
paddingBR | Size | |
리턴 | void |
public Detect ( OpenCvSharp.Mat img, double hitThreshold, Size winStride = null, Size padding = null, System.Point searchLocations = null ) : System.Point[] | ||
img | OpenCvSharp.Mat | Source image. CV_8UC1 and CV_8UC4 types are supported for now. |
hitThreshold | double | Threshold for the distance between features and SVM classifying plane. /// Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). /// But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
winStride | Size | Window stride. It must be a multiple of block stride. |
padding | Size | Mock parameter to keep the CPU interface compatibility. It must be (0,0). |
searchLocations | System.Point | |
리턴 | System.Point[] |
public Detect ( OpenCvSharp.Mat img, double &weights, double hitThreshold, Size winStride = null, Size padding = null, System.Point searchLocations = null ) : System.Point[] | ||
img | OpenCvSharp.Mat | Source image. CV_8UC1 and CV_8UC4 types are supported for now. |
weights | double | |
hitThreshold | double | Threshold for the distance between features and SVM classifying plane. /// Usually it is 0 and should be specfied in the detector coefficients (as the last free coefficient). /// But if the free coefficient is omitted (which is allowed), you can specify it manually here. |
winStride | Size | Window stride. It must be a multiple of block stride. |
padding | Size | Mock parameter to keep the CPU interface compatibility. It must be (0,0). |
searchLocations | System.Point | |
리턴 | System.Point[] |
public DetectMultiScale ( OpenCvSharp.Mat img, double hitThreshold, Size winStride = null, Size padding = null, double scale = 1.05, int groupThreshold = 2 ) : Rect[] | ||
img | OpenCvSharp.Mat | Source image. CV_8UC1 and CV_8UC4 types are supported for now. |
hitThreshold | double | Threshold for the distance between features and SVM classifying plane. |
winStride | Size | Window stride. It must be a multiple of block stride. |
padding | Size | Mock parameter to keep the CPU interface compatibility. It must be (0,0). |
scale | double | Coefficient of the detection window increase. |
groupThreshold | int | Coefficient to regulate the similarity threshold. /// When detected, some objects can be covered by many rectangles. 0 means not to perform grouping. |
리턴 | Rect[] |
public DetectMultiScale ( OpenCvSharp.Mat img, double &foundWeights, double hitThreshold, Size winStride = null, Size padding = null, double scale = 1.05, int groupThreshold = 2 ) : Rect[] | ||
img | OpenCvSharp.Mat | Source image. CV_8UC1 and CV_8UC4 types are supported for now. |
foundWeights | double | |
hitThreshold | double | Threshold for the distance between features and SVM classifying plane. |
winStride | Size | Window stride. It must be a multiple of block stride. |
padding | Size | Mock parameter to keep the CPU interface compatibility. It must be (0,0). |
scale | double | Coefficient of the detection window increase. |
groupThreshold | int | Coefficient to regulate the similarity threshold. /// When detected, some objects can be covered by many rectangles. 0 means not to perform grouping. |
리턴 | Rect[] |
public DetectMultiScaleROI ( OpenCvSharp.Mat img, Rect &foundLocations, |
||
img | OpenCvSharp.Mat | |
foundLocations | Rect | |
locations | ||
hitThreshold | double | |
groupThreshold | int | |
리턴 | void |
public DetectROI ( OpenCvSharp.Mat img, System.Point locations, System.Point &foundLocations, double &confidences, double hitThreshold, Size winStride = null, Size padding = null ) : void | ||
img | OpenCvSharp.Mat | |
locations | System.Point | |
foundLocations | System.Point | |
confidences | double | |
hitThreshold | double | |
winStride | Size | |
padding | Size | |
리턴 | void |
protected Dispose ( bool disposing ) : void | ||
disposing | bool | /// If disposing equals true, the method has been called directly or indirectly by a user's code. Managed and unmanaged resources can be disposed. /// If false, the method has been called by the runtime from inside the finalizer and you should not reference other objects. Only unmanaged resources can be disposed. /// |
리턴 | void |
public static GetDaimlerPeopleDetector ( ) : float[] | ||
리턴 | float[] |
public static GetDefaultPeopleDetector ( ) : float[] | ||
리턴 | float[] |
public GroupRectangles ( Rect &rectList, double &weights, int groupThreshold, double eps ) : void | ||
rectList | Rect | |
weights | double | |
groupThreshold | int | |
eps | double | |
리턴 | void |
public HOGDescriptor ( |
||
ptr | class HOGDescriptor* | |
리턴 | System |
public HOGDescriptor ( Size winSize = null, Size blockSize = null, Size blockStride = null, Size cellSize = null, int nbins = 9, int derivAperture = 1, double winSigma = -1, HistogramNormType histogramNormType = HistogramNormType.L2Hys, double l2HysThreshold = 0.2, bool gammaCorrection = true, int nlevels = DefaultNlevels ) : System | ||
winSize | Size | Detection window size. Align to block size and block stride. |
blockSize | Size | Block size in pixels. Align to cell size. Only (16,16) is supported for now. |
blockStride | Size | Block stride. It must be a multiple of cell size. |
cellSize | Size | Cell size. Only (8, 8) is supported for now. |
nbins | int | Number of bins. Only 9 bins per cell are supported for now. |
derivAperture | int | |
winSigma | double | Gaussian smoothing window parameter. |
histogramNormType | HistogramNormType | |
l2HysThreshold | double | L2-Hys normalization method shrinkage. |
gammaCorrection | bool | Flag to specify whether the gamma correction preprocessing is required or not. |
nlevels | int | Maximum number of detection window increases. |
리턴 | System |
public Load ( string fileName, string objName = null ) : bool | ||
fileName | string | |
objName | string | |
리턴 | bool |
public Save ( string fileName, string objName = null ) : void | ||
fileName | string | |
objName | string | |
리턴 | void |
public SetSVMDetector ( float svmDetector ) : void | ||
svmDetector | float | |
리턴 | void |