Method | Description | |
---|---|---|
ChangeClassLabels ( object examples, Descriptor descriptor, object truthLabel ) : |
Returns a Vector of positive and negative labels in 1 - 0 form.
|
|
Learn ( IGenerator generator, IEnumerable |
Generate a multi-class classification model using a specialist classifier for each class label.
|
Method | Description | |
---|---|---|
GenerateModel ( IGenerator generator, object truthExamples, object falseExamples, object truthLabel, double trainingPct, object state = null ) : Tuple |
Generates and returns a new Tuple of objects: IClassifier, Score and object state
|
|
MultiClassLearner ( ) : System |
public static ChangeClassLabels ( object examples, Descriptor descriptor, object truthLabel ) : |
||
examples | object | Object examples. |
descriptor | Descriptor | Descriptor. |
truthLabel | object | The truth label's value (see |
return |
public static Learn ( IGenerator generator, IEnumerable | ||
generator | IGenerator | The generator to use for each individual classifier. |
examples | IEnumerable | Training examples of any number of classes |
trainingPercentage | double | Percentage of training examples to use, i.e. 70% = 0.7 |
mixingPercentage | double | Percentage to mix positive and negative exmaples, i.e. 50% will add an additional 50% of
/// |
isMultiClass | bool | Determines whether each class is mutually inclusive.
/// |
return | ClassificationModel |