C# Class FannWrapperFixed.neural_net

Inheritance: global::System.IDisposable
ファイルを表示 Open project: joelself/FannCSharp Class Usage Examples

Protected Properties

Property Type Description
swigCMemOwn bool

Public Methods

Method Description
Dispose ( ) : void
copy_from_struct_fann ( SWIGTYPE_p_fann other ) : void
create_from_file ( string configuration_file ) : bool
create_shortcut ( uint num_layers ) : bool
create_shortcut_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
create_sparse ( float connection_rate, uint num_layers ) : bool
create_sparse_array ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
create_standard ( uint num_layers ) : bool
create_standard_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
destroy ( ) : void
disable_seed_rand ( ) : void
enable_seed_rand ( ) : void
get_MSE ( ) : float
get_activation_function ( int layer, int neuron ) : ActivationFunction
get_activation_steepness ( int layer, int neuron ) : int
get_bias_array ( SWIGTYPE_p_unsigned_int bias ) : void
get_bit_fail ( ) : uint
get_bit_fail_limit ( ) : int
get_connection_array ( Connection connections ) : void
get_connection_rate ( ) : float
get_decimal_point ( ) : uint
get_errno ( ) : uint
get_errstr ( ) : string
get_layer_array ( SWIGTYPE_p_unsigned_int layers ) : void
get_learning_momentum ( ) : float
get_learning_rate ( ) : float
get_multiplier ( ) : uint
get_network_type ( ) : NetworkType
get_num_input ( ) : uint
get_num_layers ( ) : uint
get_num_output ( ) : uint
get_quickprop_decay ( ) : float
get_quickprop_mu ( ) : float
get_rprop_decrease_factor ( ) : float
get_rprop_delta_max ( ) : float
get_rprop_delta_min ( ) : float
get_rprop_delta_zero ( ) : float
get_rprop_increase_factor ( ) : float
get_sarprop_step_error_shift ( ) : float
get_sarprop_step_error_threshold_factor ( ) : float
get_sarprop_temperature ( ) : float
get_sarprop_weight_decay_shift ( ) : float
get_total_connections ( ) : uint
get_total_neurons ( ) : uint
get_train_error_function ( ) : ErrorFunction
get_train_stop_function ( ) : StopFunction
get_training_algorithm ( ) : TrainingAlgorithm
init_weights ( training_data data ) : void
neural_net ( ) : FANNCSharp
neural_net ( NetworkType net_type, uint num_layers ) : FANNCSharp
neural_net ( NetworkType net_type, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
neural_net ( SWIGTYPE_p_fann other ) : FANNCSharp
neural_net ( float connection_rate, uint num_layers ) : FANNCSharp
neural_net ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
neural_net ( neural_net other ) : FANNCSharp
neural_net ( string configuration_file ) : FANNCSharp
print_connections ( ) : void
print_error ( ) : void
print_parameters ( ) : void
randomize_weights ( int min_weight, int max_weight ) : void
reset_MSE ( ) : void
reset_errno ( ) : void
reset_errstr ( ) : void
run ( int input ) : SWIGTYPE_p_int
save ( string configuration_file ) : bool
save_to_fixed ( string configuration_file ) : int
set_activation_function ( ActivationFunction activation_function, int layer, int neuron ) : void
set_activation_function_hidden ( ActivationFunction activation_function ) : void
set_activation_function_layer ( ActivationFunction activation_function, int layer ) : void
set_activation_function_output ( ActivationFunction activation_function ) : void
set_activation_steepness ( int steepness, int layer, int neuron ) : void
set_activation_steepness_hidden ( int steepness ) : void
set_activation_steepness_layer ( int steepness, int layer ) : void
set_activation_steepness_output ( int steepness ) : void
set_bit_fail_limit ( int bit_fail_limit ) : void
set_error_log ( SWIGTYPE_p_FILE log_file ) : void
set_learning_momentum ( float learning_momentum ) : void
set_learning_rate ( float learning_rate ) : void
set_quickprop_decay ( float quickprop_decay ) : void
set_quickprop_mu ( float quickprop_mu ) : void
set_rprop_decrease_factor ( float rprop_decrease_factor ) : void
set_rprop_delta_max ( float rprop_delta_max ) : void
set_rprop_delta_min ( float rprop_delta_min ) : void
set_rprop_delta_zero ( float rprop_delta_zero ) : void
set_rprop_increase_factor ( float rprop_increase_factor ) : void
set_sarprop_step_error_shift ( float sarprop_step_error_shift ) : void
set_sarprop_step_error_threshold_factor ( float sarprop_step_error_threshold_factor ) : void
set_sarprop_temperature ( float sarprop_temperature ) : void
set_sarprop_weight_decay_shift ( float sarprop_weight_decay_shift ) : void
set_train_error_function ( ErrorFunction train_error_function ) : void
set_train_stop_function ( StopFunction train_stop_function ) : void
set_training_algorithm ( TrainingAlgorithm training_algorithm ) : void
set_weight ( uint from_neuron, uint to_neuron, int weight ) : void
set_weight_array ( Connection connections, uint num_connections ) : void
test ( int input, int desired_output ) : SWIGTYPE_p_int
test_data ( training_data data ) : float
to_fann ( ) : SWIGTYPE_p_fann

Private Methods

Method Description
getCPtr ( neural_net obj ) : global::System.Runtime.InteropServices.HandleRef
neural_net ( global cPtr, bool cMemoryOwn ) : FANNCSharp

Method Details

Dispose() public method

public Dispose ( ) : void
return void

copy_from_struct_fann() public method

public copy_from_struct_fann ( SWIGTYPE_p_fann other ) : void
other FANNCSharp.SWIGTYPE_p_fann
return void

create_from_file() public method

public create_from_file ( string configuration_file ) : bool
configuration_file string
return bool

create_shortcut() public method

public create_shortcut ( uint num_layers ) : bool
num_layers uint
return bool

create_shortcut_array() public method

public create_shortcut_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return bool

create_sparse() public method

public create_sparse ( float connection_rate, uint num_layers ) : bool
connection_rate float
num_layers uint
return bool

create_sparse_array() public method

public create_sparse_array ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
connection_rate float
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return bool

create_standard() public method

public create_standard ( uint num_layers ) : bool
num_layers uint
return bool

create_standard_array() public method

public create_standard_array ( uint num_layers, SWIGTYPE_p_unsigned_int layers ) : bool
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return bool

destroy() public method

public destroy ( ) : void
return void

disable_seed_rand() public method

public disable_seed_rand ( ) : void
return void

enable_seed_rand() public method

public enable_seed_rand ( ) : void
return void

get_MSE() public method

public get_MSE ( ) : float
return float

get_activation_function() public method

public get_activation_function ( int layer, int neuron ) : ActivationFunction
layer int
neuron int
return ActivationFunction

get_activation_steepness() public method

public get_activation_steepness ( int layer, int neuron ) : int
layer int
neuron int
return int

get_bias_array() public method

public get_bias_array ( SWIGTYPE_p_unsigned_int bias ) : void
bias FANNCSharp.SWIGTYPE_p_unsigned_int
return void

get_bit_fail() public method

public get_bit_fail ( ) : uint
return uint

get_bit_fail_limit() public method

public get_bit_fail_limit ( ) : int
return int

get_connection_array() public method

public get_connection_array ( Connection connections ) : void
connections Connection
return void

get_connection_rate() public method

public get_connection_rate ( ) : float
return float

get_decimal_point() public method

public get_decimal_point ( ) : uint
return uint

get_errno() public method

public get_errno ( ) : uint
return uint

get_errstr() public method

public get_errstr ( ) : string
return string

get_layer_array() public method

public get_layer_array ( SWIGTYPE_p_unsigned_int layers ) : void
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return void

get_learning_momentum() public method

public get_learning_momentum ( ) : float
return float

get_learning_rate() public method

public get_learning_rate ( ) : float
return float

get_multiplier() public method

public get_multiplier ( ) : uint
return uint

get_network_type() public method

public get_network_type ( ) : NetworkType
return NetworkType

get_num_input() public method

public get_num_input ( ) : uint
return uint

get_num_layers() public method

public get_num_layers ( ) : uint
return uint

get_num_output() public method

public get_num_output ( ) : uint
return uint

get_quickprop_decay() public method

public get_quickprop_decay ( ) : float
return float

get_quickprop_mu() public method

public get_quickprop_mu ( ) : float
return float

get_rprop_decrease_factor() public method

public get_rprop_decrease_factor ( ) : float
return float

get_rprop_delta_max() public method

public get_rprop_delta_max ( ) : float
return float

get_rprop_delta_min() public method

public get_rprop_delta_min ( ) : float
return float

get_rprop_delta_zero() public method

public get_rprop_delta_zero ( ) : float
return float

get_rprop_increase_factor() public method

public get_rprop_increase_factor ( ) : float
return float

get_sarprop_step_error_shift() public method

public get_sarprop_step_error_shift ( ) : float
return float

get_sarprop_step_error_threshold_factor() public method

public get_sarprop_step_error_threshold_factor ( ) : float
return float

get_sarprop_temperature() public method

public get_sarprop_temperature ( ) : float
return float

get_sarprop_weight_decay_shift() public method

public get_sarprop_weight_decay_shift ( ) : float
return float

get_total_connections() public method

public get_total_connections ( ) : uint
return uint

get_total_neurons() public method

public get_total_neurons ( ) : uint
return uint

get_train_error_function() public method

public get_train_error_function ( ) : ErrorFunction
return ErrorFunction

get_train_stop_function() public method

public get_train_stop_function ( ) : StopFunction
return StopFunction

get_training_algorithm() public method

public get_training_algorithm ( ) : TrainingAlgorithm
return TrainingAlgorithm

init_weights() public method

public init_weights ( training_data data ) : void
data training_data
return void

neural_net() public method

public neural_net ( ) : FANNCSharp
return FANNCSharp

neural_net() public method

public neural_net ( NetworkType net_type, uint num_layers ) : FANNCSharp
net_type NetworkType
num_layers uint
return FANNCSharp

neural_net() public method

public neural_net ( NetworkType net_type, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
net_type NetworkType
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return FANNCSharp

neural_net() public method

public neural_net ( SWIGTYPE_p_fann other ) : FANNCSharp
other FANNCSharp.SWIGTYPE_p_fann
return FANNCSharp

neural_net() public method

public neural_net ( float connection_rate, uint num_layers ) : FANNCSharp
connection_rate float
num_layers uint
return FANNCSharp

neural_net() public method

public neural_net ( float connection_rate, uint num_layers, SWIGTYPE_p_unsigned_int layers ) : FANNCSharp
connection_rate float
num_layers uint
layers FANNCSharp.SWIGTYPE_p_unsigned_int
return FANNCSharp

neural_net() public method

public neural_net ( neural_net other ) : FANNCSharp
other neural_net
return FANNCSharp

neural_net() public method

public neural_net ( string configuration_file ) : FANNCSharp
configuration_file string
return FANNCSharp

print_connections() public method

public print_connections ( ) : void
return void

print_error() public method

public print_error ( ) : void
return void

print_parameters() public method

public print_parameters ( ) : void
return void

randomize_weights() public method

public randomize_weights ( int min_weight, int max_weight ) : void
min_weight int
max_weight int
return void

reset_MSE() public method

public reset_MSE ( ) : void
return void

reset_errno() public method

public reset_errno ( ) : void
return void

reset_errstr() public method

public reset_errstr ( ) : void
return void

run() public method

public run ( int input ) : SWIGTYPE_p_int
input int
return SWIGTYPE_p_int

save() public method

public save ( string configuration_file ) : bool
configuration_file string
return bool

save_to_fixed() public method

public save_to_fixed ( string configuration_file ) : int
configuration_file string
return int

set_activation_function() public method

public set_activation_function ( ActivationFunction activation_function, int layer, int neuron ) : void
activation_function ActivationFunction
layer int
neuron int
return void

set_activation_function_hidden() public method

public set_activation_function_hidden ( ActivationFunction activation_function ) : void
activation_function ActivationFunction
return void

set_activation_function_layer() public method

public set_activation_function_layer ( ActivationFunction activation_function, int layer ) : void
activation_function ActivationFunction
layer int
return void

set_activation_function_output() public method

public set_activation_function_output ( ActivationFunction activation_function ) : void
activation_function ActivationFunction
return void

set_activation_steepness() public method

public set_activation_steepness ( int steepness, int layer, int neuron ) : void
steepness int
layer int
neuron int
return void

set_activation_steepness_hidden() public method

public set_activation_steepness_hidden ( int steepness ) : void
steepness int
return void

set_activation_steepness_layer() public method

public set_activation_steepness_layer ( int steepness, int layer ) : void
steepness int
layer int
return void

set_activation_steepness_output() public method

public set_activation_steepness_output ( int steepness ) : void
steepness int
return void

set_bit_fail_limit() public method

public set_bit_fail_limit ( int bit_fail_limit ) : void
bit_fail_limit int
return void

set_error_log() public method

public set_error_log ( SWIGTYPE_p_FILE log_file ) : void
log_file FANNCSharp.SWIGTYPE_p_FILE
return void

set_learning_momentum() public method

public set_learning_momentum ( float learning_momentum ) : void
learning_momentum float
return void

set_learning_rate() public method

public set_learning_rate ( float learning_rate ) : void
learning_rate float
return void

set_quickprop_decay() public method

public set_quickprop_decay ( float quickprop_decay ) : void
quickprop_decay float
return void

set_quickprop_mu() public method

public set_quickprop_mu ( float quickprop_mu ) : void
quickprop_mu float
return void

set_rprop_decrease_factor() public method

public set_rprop_decrease_factor ( float rprop_decrease_factor ) : void
rprop_decrease_factor float
return void

set_rprop_delta_max() public method

public set_rprop_delta_max ( float rprop_delta_max ) : void
rprop_delta_max float
return void

set_rprop_delta_min() public method

public set_rprop_delta_min ( float rprop_delta_min ) : void
rprop_delta_min float
return void

set_rprop_delta_zero() public method

public set_rprop_delta_zero ( float rprop_delta_zero ) : void
rprop_delta_zero float
return void

set_rprop_increase_factor() public method

public set_rprop_increase_factor ( float rprop_increase_factor ) : void
rprop_increase_factor float
return void

set_sarprop_step_error_shift() public method

public set_sarprop_step_error_shift ( float sarprop_step_error_shift ) : void
sarprop_step_error_shift float
return void

set_sarprop_step_error_threshold_factor() public method

public set_sarprop_step_error_threshold_factor ( float sarprop_step_error_threshold_factor ) : void
sarprop_step_error_threshold_factor float
return void

set_sarprop_temperature() public method

public set_sarprop_temperature ( float sarprop_temperature ) : void
sarprop_temperature float
return void

set_sarprop_weight_decay_shift() public method

public set_sarprop_weight_decay_shift ( float sarprop_weight_decay_shift ) : void
sarprop_weight_decay_shift float
return void

set_train_error_function() public method

public set_train_error_function ( ErrorFunction train_error_function ) : void
train_error_function ErrorFunction
return void

set_train_stop_function() public method

public set_train_stop_function ( StopFunction train_stop_function ) : void
train_stop_function StopFunction
return void

set_training_algorithm() public method

public set_training_algorithm ( TrainingAlgorithm training_algorithm ) : void
training_algorithm TrainingAlgorithm
return void

set_weight() public method

public set_weight ( uint from_neuron, uint to_neuron, int weight ) : void
from_neuron uint
to_neuron uint
weight int
return void

set_weight_array() public method

public set_weight_array ( Connection connections, uint num_connections ) : void
connections Connection
num_connections uint
return void

test() public method

public test ( int input, int desired_output ) : SWIGTYPE_p_int
input int
desired_output int
return SWIGTYPE_p_int

test_data() public method

public test_data ( training_data data ) : float
data training_data
return float

to_fann() public method

public to_fann ( ) : SWIGTYPE_p_fann
return SWIGTYPE_p_fann

Property Details

swigCMemOwn protected_oe property

protected bool swigCMemOwn
return bool