Name | Description |
---|---|
EBCOTRateAllocator | This implements the EBCOT post compression rate allocation algorithm. This algorithm finds the most suitable truncation points for the set of code-blocks, for each layer target bitrate. It works by first collecting the rate distortion info from all code-blocks, in all tiles and all components, and then running the rate-allocation on the whole image at once, for each layer. This implementation also provides some timing features. They can be enabled by setting the 'DO_TIMING' constant of this class to true and recompiling. The timing uses the 'System.currentTimeMillis()' Java API call, which returns wall clock time, not the actual CPU time used. The timing results will be printed on the message output. Since the times reported are wall clock times and not CPU usage times they can not be added to find the total used time (i.e. some time might be counted in several places). When timing is disabled ('DO_TIMING' is false) there is no penalty if the compiler performs some basic optimizations. Even if not the penalty should be negligeable. |
MQCoder | This class implements the MQ arithmetic coder. When initialized a specific state can be specified for each context, which may be adapted to the probability distribution that is expected for that context. The type of length calculation and termination can be chosen at construction time. ---- Tricks that have been tried to improve speed ---- 1) Merging Qe and mPS and doubling the lookup tables 2) Removing cT 3) Change the convention of MPS and LPS. 4) Removing normalization while loop on MPS path 5) Simplifying test on A register 6) Speedup mode 7) Multiple-symbol coding |
PostCompRateAllocator | This is the abstract class from which post-compression rate allocators which generate layers should inherit. The source of data is a 'CodedCBlkDataSrcEnc' which delivers entropy coded blocks with rate-distortion statistics. The post compression rate allocator implementation should create the layers, according to a rate allocation policy, and send the packets to a CodestreamWriter. Since the rate allocator sends the packets to the bit stream then it should output the packets to the bit stream in the order imposed by the bit stream profiles. |
StdEntropyCoder | This class implements the JPEG 2000 entropy coder, which codes stripes in code-blocks. This entropy coding engine can function in a single-threaded mode where one code-block is encoded at a time, or in a multi-threaded mode where multiple code-blocks are entropy coded in parallel. The interface presented by this class is the same in both modes. The number of threads used by this entropy coder is specified by the "jj2000.j2k.entropy.encoder.StdEntropyCoder.nthreads" Java system property. If set to "0" the single threaded implementation is used. If set to 'n' ('n' larger than 0) then 'n' extra threads are started by this class which are used to encode the code-blocks in parallel (i.e. ideally 'n' code-blocks will be encoded in parallel at a time). On multiprocessor machines under a "native threads" Java Virtual Machine implementation each one of these threads can run on a separate processor speeding up the encoding time. By default the single-threaded implementation is used. The multi-threaded implementation currently assumes that the vast majority of consecutive calls to 'getNextCodeBlock()' will be done on the same component. If this is not the case, the speed-up that can be expected on multiprocessor machines might be significantly decreased. The code-blocks are rectangular, with dimensions which must be powers of 2. Each dimension has to be no smaller than 4 and no larger than 256. The product of the two dimensions (i.e. area of the code-block) may not exceed 4096. Context 0 of the MQ-coder is used as the uniform one (uniform, non-adaptive probability distribution). Context 1 is used for RLC coding. Contexts 2-10 are used for zero-coding (ZC), contexts 11-15 are used for sign-coding (SC) and contexts 16-18 are used for magnitude-refinement (MR). This implementation buffers the symbols and calls the MQ coder only once per stripe and per coding pass, to reduce the method call overhead. This implementation also provides some timing features. They can be enabled by setting the 'DO_TIMING' constant of this class to true and recompiling. The timing uses the 'System.currentTimeMillis()' Java API call, which returns wall clock time, not the actual CPU time used. The timing results will be printed on the message output. Since the times reported are wall clock times and not CPU usage times they can not be added to find the total used time (i.e. some time might be counted in several places). When timing is disabled ('DO_TIMING' is false) there is no penalty if the compiler performs some basic optimizations. Even if not the penalty should be negligeable. The source module must implement the CBlkQuantDataSrcEnc interface and code-block's data is received in a CBlkWTData instance. This modules sends code-block's information in a CBlkRateDistStats instance. |