Méthode | Description | |
---|---|---|
Create ( ) : |
Creates empty model. Use StatModel::train to train the model after creation.
|
|
PredictProb ( InputArray inputs, OutputArray outputs, OutputArray outputProbs, int flags ) : float |
Predicts the response for sample(s). The method estimates the most probable classes for input vectors. Input vectors (one or more) are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one output vector outputs. The predicted class for a single input vector is returned by the method. The vector outputProbs contains the output probabilities corresponding to each element of result. |
Méthode | Description | |
---|---|---|
Dispose ( bool disposing ) : void |
Clean up any resources being used.
|
|
NormalBayesClassifier ( |
Creates instance by raw pointer cv::ml::NormalBayesClassifier*
|
public static Create ( ) : |
||
Résultat |
protected Dispose ( bool disposing ) : void | ||
disposing | bool | /// If disposing equals true, the method has been called directly or indirectly by a user's code. Managed and unmanaged resources can be disposed. /// If false, the method has been called by the runtime from inside the finalizer and you should not reference other objects. Only unmanaged resources can be disposed. /// |
Résultat | void |
protected NormalBayesClassifier ( |
||
p | ||
Résultat | System |
public PredictProb ( InputArray inputs, OutputArray outputs, OutputArray outputProbs, int flags ) : float | ||
inputs | InputArray | |
outputs | OutputArray | |
outputProbs | OutputArray | |
flags | int | |
Résultat | float |