Méthode | Description | |
---|---|---|
ConvolutionDescriptor ( ) : System |
|
|
Dispose ( ) : void |
Dispose
|
|
GetConvolution2dDescriptor ( int &pad_h, int &pad_w, int &u, int &v, int &upscalex, int &upscaley, cudnnConvolutionMode &mode, cudnnDataType &dataType ) : void |
This function queries a previously initialized 2D convolution descriptor object.
|
|
GetConvolution2dForwardOutputDim ( |
This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.
|
|
GetConvolutionNdDescriptor ( int arrayLengthRequested, int &arrayLength, int padA, int strideA, int upscaleA, cudnnConvolutionMode &mode, cudnnDataType &dataType ) : void |
This function queries a previously initialized convolution descriptor object.
|
|
GetConvolutionNdForwardOutputDim ( |
This function returns the dimensions of the resulting n-D tensor of a nbDims-2-D convolution, given the convolution descriptor, the input tensor descriptor and the filter descriptor This function can help to setup the output tensor and allocate the proper amount of memory prior to launch the actual convolution.
|
|
SetConvolution2dDescriptor ( int pad_h, int pad_w, int u, int v, int upscalex, int upscaley, cudnnConvolutionMode mode, cudnnDataType dataType ) : void |
This function initializes a previously created convolution descriptor object into a 2D correlation. This function assumes that the tensor and filter descriptors corresponds to the formard convolution path and checks if their settings are valid. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer.
|
|
SetConvolutionNdDescriptor ( int arrayLength, int padA, int filterStrideA, int upscaleA, cudnnConvolutionMode mode, cudnnDataType dataType ) : void |
This function initializes a previously created generic convolution descriptor object into a n-D correlation. That same convolution descriptor can be reused in the backward path provided it corresponds to the same layer. The convolution computation will done in the specified dataType, which can be potentially different from the input/output tensors.
|
Méthode | Description | |
---|---|---|
Dispose ( bool fDisposing ) : void |
For IDisposable
|
protected Dispose ( bool fDisposing ) : void | ||
fDisposing | bool | |
Résultat | void |
public GetConvolution2dDescriptor ( int &pad_h, int &pad_w, int &u, int &v, int &upscalex, int &upscaley, cudnnConvolutionMode &mode, cudnnDataType &dataType ) : void | ||
pad_h | int | zero-padding height: number of rows of zeros implicitly concatenated /// onto the top and onto the bottom of input images. |
pad_w | int | zero-padding width: number of columns of zeros implicitly concatenated /// onto the left and onto the right of input images. |
u | int | Vertical filter stride. |
v | int | Horizontal filter stride. |
upscalex | int | Upscale the input in x-direction. |
upscaley | int | Upscale the input in y-direction. |
mode | cudnnConvolutionMode | convolution mode. |
dataType | cudnnDataType | Selects the datatype in which the computation will be done. |
Résultat | void |
public GetConvolution2dForwardOutputDim ( |
||
inputTensorDesc | Handle to a previously initialized tensor descriptor. | |
filterDesc | Handle to a previously initialized filter descriptor. | |
n | int | Number of output images. |
c | int | Number of output feature maps per image. |
h | int | Height of each output feature map. |
w | int | Width of each output feature map. |
Résultat | void |
public GetConvolutionNdDescriptor ( int arrayLengthRequested, int &arrayLength, int padA, int strideA, int upscaleA, cudnnConvolutionMode &mode, cudnnDataType &dataType ) : void | ||
arrayLengthRequested | int | Dimension of the expected convolution descriptor. It is also the /// minimum size of the arrays padA, filterStrideA and upsacleA in /// order to be able to hold the results |
arrayLength | int | actual dimension of the convolution descriptor. |
padA | int | Array of dimension of at least arrayLengthRequested that will be /// filled with the padding parameters from the provided convolution /// descriptor. |
strideA | int | Array of dimension of at least arrayLengthRequested that will be /// filled with the filter stride from the provided convolution descriptor. |
upscaleA | int | Array of dimension at least arrayLengthRequested that will be filled /// with the upscaling parameters from the provided convolution descriptor. |
mode | cudnnConvolutionMode | convolution mode of the provided descriptor. |
dataType | cudnnDataType | datatype of the provided descriptor. |
Résultat | void |
public GetConvolutionNdForwardOutputDim ( |
||
inputTensorDesc | Handle to a previously initialized tensor descriptor. | |
filterDesc | Handle to a previously initialized filter descriptor. | |
nbDims | int | Dimension of the output tensor |
tensorOuputDimA | int | Array of dimensions nbDims that contains on exit of this routine the sizes /// of the output tensor |
Résultat | void |
public SetConvolution2dDescriptor ( int pad_h, int pad_w, int u, int v, int upscalex, int upscaley, cudnnConvolutionMode mode, cudnnDataType dataType ) : void | ||
pad_h | int | zero-padding height: number of rows of zeros implicitly concatenated /// onto the top and onto the bottom of input images. |
pad_w | int | zero-padding width: number of columns of zeros implicitly concatenated /// onto the left and onto the right of input images. |
u | int | Vertical filter stride. |
v | int | Horizontal filter stride. |
upscalex | int | Upscale the input in x-direction. |
upscaley | int | Upscale the input in y-direction. |
mode | cudnnConvolutionMode | Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION. |
dataType | cudnnDataType | Selects the datatype in which the computation will be done. |
Résultat | void |
public SetConvolutionNdDescriptor ( int arrayLength, int padA, int filterStrideA, int upscaleA, cudnnConvolutionMode mode, cudnnDataType dataType ) : void | ||
arrayLength | int | Dimension of the convolution. |
padA | int | Array of dimension arrayLength containing the zero-padding size /// for each dimension. For every dimension, the padding represents the /// number of extra zeros implicitly concatenated at the start and at the /// end of every element of that dimension. |
filterStrideA | int | Array of dimension arrayLength containing the filter stride for each /// dimension. For every dimension, the fitler stride represents the number /// of elements to slide to reach the next start of the filtering window of /// the next point. |
upscaleA | int | Array of dimension arrayLength containing the upscale factor for each dimension. |
mode | cudnnConvolutionMode | Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION. |
dataType | cudnnDataType | Selects the datatype in which the computation will be done. |
Résultat | void |