C# Class Encog.Neural.NEAT.Training.NEATTraining

Implements NEAT genetic training. NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm for the generation of evolving artificial neural networks. It was developed by Ken Stanley while at The University of Texas at Austin. http://www.cs.ucf.edu/~kstanley/
Inheritance: Encog.ML.Genetic.GeneticAlgorithm, IMLTrain
Afficher le fichier Open project: encog/encog-silverlight-core Class Usage Examples

Méthodes publiques

Méthode Description
AddNeuronID ( long nodeID, IList vec ) : void

Add the specified neuron id.

AddStrategy ( IStrategy strategy ) : void
AdjustCompatibilityThreshold ( ) : void

Adjust the compatibility threshold.

AdjustSpeciesScore ( ) : void

Adjust each species score.

Crossover ( NEATGenome mom, NEATGenome dad ) : NEATGenome

Perform a cross over.

FinishTraining ( ) : void
Iteration ( ) : void

Perform one training iteration.

Iteration ( int count ) : void
NEATTraining ( ICalculateScore calculateScore, IPopulation population ) : System

Construct neat training with an existing population.

NEATTraining ( ICalculateScore calculateScore, int inputCount, int outputCount, int populationSize ) : System

Construct a neat trainer with a new population. The new population is created from the specified parameters.

Pause ( ) : TrainingContinuation
ResetAndKill ( ) : void

Reset counts and kill genomes with worse scores.

Resume ( TrainingContinuation state ) : void
SortAndRecord ( ) : void

Sort the genomes.

SpeciateAndCalculateSpawnLevels ( ) : void

Determine the species.

TournamentSelection ( int numComparisons ) : NEATGenome

Select a gene using a tournament.

Private Methods

Méthode Description
Init ( ) : void

Init the training.

Method Details

AddNeuronID() public méthode

Add the specified neuron id.
public AddNeuronID ( long nodeID, IList vec ) : void
nodeID long The neuron to add.
vec IList The list to add to.
Résultat void

AddStrategy() public méthode

public AddStrategy ( IStrategy strategy ) : void
strategy IStrategy
Résultat void

AdjustCompatibilityThreshold() public méthode

Adjust the compatibility threshold.
public AdjustCompatibilityThreshold ( ) : void
Résultat void

AdjustSpeciesScore() public méthode

Adjust each species score.
public AdjustSpeciesScore ( ) : void
Résultat void

Crossover() public méthode

Perform a cross over.
public Crossover ( NEATGenome mom, NEATGenome dad ) : NEATGenome
mom NEATGenome The mother genome.
dad NEATGenome The father genome.
Résultat NEATGenome

FinishTraining() public méthode

public FinishTraining ( ) : void
Résultat void

Iteration() public méthode

Perform one training iteration.
public Iteration ( ) : void
Résultat void

Iteration() public méthode

public Iteration ( int count ) : void
count int
Résultat void

NEATTraining() public méthode

Construct neat training with an existing population.
public NEATTraining ( ICalculateScore calculateScore, IPopulation population ) : System
calculateScore ICalculateScore The score object to use.
population IPopulation The population to use.
Résultat System

NEATTraining() public méthode

Construct a neat trainer with a new population. The new population is created from the specified parameters.
public NEATTraining ( ICalculateScore calculateScore, int inputCount, int outputCount, int populationSize ) : System
calculateScore ICalculateScore The score calculation object.
inputCount int The input neuron count.
outputCount int The output neuron count.
populationSize int The population size.
Résultat System

Pause() public méthode

public Pause ( ) : TrainingContinuation
Résultat Encog.Neural.Networks.Training.Propagation.TrainingContinuation

ResetAndKill() public méthode

Reset counts and kill genomes with worse scores.
public ResetAndKill ( ) : void
Résultat void

Resume() public méthode

public Resume ( TrainingContinuation state ) : void
state Encog.Neural.Networks.Training.Propagation.TrainingContinuation
Résultat void

SortAndRecord() public méthode

Sort the genomes.
public SortAndRecord ( ) : void
Résultat void

SpeciateAndCalculateSpawnLevels() public méthode

Determine the species.
public SpeciateAndCalculateSpawnLevels ( ) : void
Résultat void

TournamentSelection() public méthode

Select a gene using a tournament.
public TournamentSelection ( int numComparisons ) : NEATGenome
numComparisons int The number of compares to do.
Résultat NEATGenome