Méthode |
Description |
|
AddTranslation ( Vec3 t ) : Matrix34 |
|
|
Create ( Vec3 s, Quat q, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateFromVectors ( Vec3 vx, Vec3 vy, Vec3 vz, Vec3 pos ) : Matrix34 |
|
|
CreateIdentity ( ) : Matrix34 |
|
|
CreateRotationAA ( Vec3 rot, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationAA ( float rad, Vec3 axis, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationAA ( float c, float s, Vec3 axis, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationX ( float rad, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationXYZ ( Vec3 rad, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationY ( float rad, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateRotationZ ( float rad, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateScale ( Vec3 s, Vec3 t = default(Vec3) ) : Matrix34 |
|
|
CreateSlerp ( Matrix34 m, Matrix34 n, float t ) : Matrix34 |
|
|
CreateTranslationMat ( Vec3 v ) : Matrix34 |
|
|
Determinant ( ) : float |
determinant is ambiguous: only the upper-left-submatrix's determinant is calculated |
|
GetHashCode ( ) : int |
|
|
Invert ( ) : void |
|
|
InvertFast ( ) : void |
|
|
IsEquivalent ( Matrix34 m, float e = 0.05f ) : bool |
|
|
IsOrthonormalRH ( float threshold = 0.001f ) : int |
|
|
Matrix34 ( Matrix33 m33 ) : System |
|
|
Matrix34 ( Vec3 s, Quat q, Vec3 t = default(Vec3) ) : System |
|
|
Matrix34 ( float v00, float v01, float v02, float v03, float v10, float v11, float v12, float v13, float v20, float v21, float v22, float v23 ) : System |
|
|
OrthonormalizeFast ( ) : void |
Remove scale from matrix. |
|
ScaleTranslation ( float s ) : void |
|
|
Set ( Vec3 s, Quat q, Vec3 t = default(Vec3) ) : void |
|
|
SetFromVectors ( Vec3 vx, Vec3 vy, Vec3 vz, Vec3 pos ) : void |
|
|
SetIdentity ( ) : void |
|
|
SetRotation33 ( Matrix33 m33 ) : void |
|
|
SetRotationAA ( Vec3 rot, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationAA ( float rad, Vec3 axis, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationAA ( float c, float s, Vec3 axis, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationX ( float rad, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationXYZ ( Vec3 rad, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationY ( float rad, Vec3 t = default(Vec3) ) : void |
|
|
SetRotationZ ( float rad, Vec3 t = default(Vec3) ) : void |
|
|
SetScale ( Vec3 s, Vec3 t = default(Vec3) ) : void |
|
|
SetSlerp ( Matrix34 m, Matrix34 n, float t ) : void |
Direct-Matrix-Slerp: for the sake of completeness, I have included the following expression for Spherical-Linear-Interpolation without using quaternions. This is much faster then converting both matrices into quaternions in order to do a quaternion slerp and then converting the slerped quaternion back into a matrix. This is a high-precision calculation. Given two orthonormal 3x3 matrices this function calculates the shortest possible interpolation-path between the two rotations. The interpolation curve forms a great arc on the rotation sphere (geodesic). Not only does Slerp follow a great arc it follows the shortest great arc. Furthermore Slerp has constant angular velocity. All in all Slerp is the optimal interpolation curve between two rotations. STABILITY PROBLEM: There are two singularities at angle=0 and angle=PI. At 0 the interpolation-axis is arbitrary, which means any axis will produce the same result because we have no rotation. Thats why I'm using (1,0,0). At PI the rotations point away from each other and the interpolation-axis is unpredictable. In this case I'm also using the axis (1,0,0). If the angle is ~0 or ~PI, then we have to normalize a very small vector and this can cause numerical instability. The quaternion-slerp has exactly the same problems. Ivo |
|
SetTranslation ( Vec3 t ) : void |
|
|
SetTranslationMat ( Vec3 v ) : void |
|
|
TransformPoint ( Vec3 p ) : Vec3 |
transforms a point and add translation vector |
|
TransformVector ( Vec3 p ) : Vec3 |
transforms a vector. the translation is not beeing considered |
|
operator ( ) : Matrix34 |
|
|