Méthode | Description | |
---|---|---|
Clone ( ) : object |
Creates a new object that is a copy of the current instance.
|
|
Distance ( double x, double y ) : double |
Computes the squared distance in feature space between two points given in input space.
|
|
Function ( double x, double y ) : double |
Sparse Linear kernel function.
|
|
Product ( double x, double y ) : double |
Computes the product of two vectors given in sparse representation.
|
|
SparseLinear ( ) : System |
Constructs a new Linear Kernel.
|
|
SparseLinear ( double constant ) : System |
Constructs a new Linear kernel.
|
|
SquaredEuclidean ( double x, double y ) : double |
Computes the squared Euclidean distance of two vectors given in sparse representation.
|
public Distance ( double x, double y ) : double | ||
x | double | Vector |
y | double | Vector |
Résultat | double |
public Function ( double x, double y ) : double | ||
x | double | Sparse vector |
y | double | Sparse vector |
Résultat | double |
public static Product ( double x, double y ) : double | ||
x | double | The first vector |
y | double | The second vector |
Résultat | double |
public SparseLinear ( double constant ) : System | ||
constant | double | A constant intercept term. Default is 0. |
Résultat | System |
public static SquaredEuclidean ( double x, double y ) : double | ||
x | double | The first vector |
y | double | The second vector |
Résultat | double |