C# Class Accord.Statistics.Distributions.Univariate.GeneralDiscreteDistribution

Inheritance: UnivariateDiscreteDistribution
Afficher le fichier Open project: atosorigin/Kinect Class Usage Examples

Méthodes publiques

Méthode Description
Clone ( ) : object

Creates a new object that is a copy of the current instance.

DistributionFunction ( int x ) : double

Gets the probability density function (pdf) for this distribution evaluated at point x.

The Probability Density Function (PDF) describes the probability that a given value x will occur.

Fit ( double observations, double weights ) : IDistribution

Fits the underlying distribution to a given set of observations.

GeneralDiscreteDistribution ( ) : System

Constructs a new generic discrete distribution.

GeneralDiscreteDistribution ( int start ) : System

Constructs a new generic discrete distribution.

GeneralDiscreteDistribution ( int start, int symbols ) : System

Constructs a new uniform discrete distribution.

ProbabilityMassFunction ( int x ) : double

Gets the probability mass function (pmf) for this distribution evaluated at point x.

The Probability Mass Function (PMF) describes the probability that a given value x will occur.

Method Details

Clone() public méthode

Creates a new object that is a copy of the current instance.
public Clone ( ) : object
Résultat object

DistributionFunction() public méthode

Gets the probability density function (pdf) for this distribution evaluated at point x.
The Probability Density Function (PDF) describes the probability that a given value x will occur.
public DistributionFunction ( int x ) : double
x int /// A single point in the distribution range. For a /// univariate distribution, this should be a single /// double value. For a multivariate distribution, /// this should be a double array.
Résultat double

Fit() public méthode

Fits the underlying distribution to a given set of observations.
public Fit ( double observations, double weights ) : IDistribution
observations double /// The array of observations to fit the model against. ///
weights double /// The weight vector containing the weight for each of the samples. ///
Résultat IDistribution

GeneralDiscreteDistribution() public méthode

Constructs a new generic discrete distribution.
public GeneralDiscreteDistribution ( ) : System
Résultat System

GeneralDiscreteDistribution() public méthode

Constructs a new generic discrete distribution.
public GeneralDiscreteDistribution ( int start ) : System
start int /// The integer value where the distribution starts, also /// known as the offset value. Default value is 0.
Résultat System

GeneralDiscreteDistribution() public méthode

Constructs a new uniform discrete distribution.
public GeneralDiscreteDistribution ( int start, int symbols ) : System
start int /// The integer value where the distribution starts, also /// known as the offset value. Default value is 0.
symbols int /// The number of discrete values within the distribution. /// The distribution is assumed to belong to the interval /// [start, start + symbols].
Résultat System

ProbabilityMassFunction() public méthode

Gets the probability mass function (pmf) for this distribution evaluated at point x.
The Probability Mass Function (PMF) describes the probability that a given value x will occur.
public ProbabilityMassFunction ( int x ) : double
x int /// A single point in the distribution range.
Résultat double