Méthode | Description | |
---|---|---|
BinarySplit ( int k ) : System |
Initializes a new instance of the Binary Split algorithm
|
|
BinarySplit ( int k, IDistance |
Initializes a new instance of the Binary Split algorithm
|
|
Learn ( double x, double weights = null ) : KMeansClusterCollection |
Learns a model that can map the given inputs to the desired outputs.
|
Méthode | Description | |
---|---|---|
split ( double cluster, KMeans kmeans ) : double[][]>.Tuple |
public BinarySplit ( int k ) : System | ||
k | int | The number of clusters to divide the input data into. |
Résultat | System |
public BinarySplit ( int k, IDistance |
||
k | int | The number of clusters to divide the input data into. |
distance | IDistance |
The distance function to use. Default is to
/// use the |
Résultat | System |
public Learn ( double x, double weights = null ) : KMeansClusterCollection | ||
x | double | The model inputs. |
weights | double | The weight of importance for each input sample. |
Résultat | KMeansClusterCollection |