Méthode | Description | |
---|---|---|
GetAction ( int state ) : int |
Get next action from the specified state. The method returns an action according to current |
|
QLearning ( int states, int actions, IExplorationPolicy explorationPolicy ) : System |
Initializes a new instance of the QLearning class. Action estimates are randomized in the case of this constructor is used. |
|
QLearning ( int states, int actions, IExplorationPolicy explorationPolicy, bool randomize ) : System |
Initializes a new instance of the QLearning class. The randomize parameter specifies if initial action estimates should be randomized with small values or not. Randomization of action values may be useful, when greedy exploration policies are used. In this case randomization ensures that actions of the same type are not chosen always. |
|
UpdateState ( int previousState, int action, double reward, int nextState ) : void |
Update Q-function's value for the previous state-action pair.
|
public GetAction ( int state ) : int | ||
state | int | Current state to get an action for. |
Résultat | int |
public QLearning ( int states, int actions, IExplorationPolicy explorationPolicy ) : System | ||
states | int | Amount of possible states. |
actions | int | Amount of possible actions. |
explorationPolicy | IExplorationPolicy | Exploration policy. |
Résultat | System |
public QLearning ( int states, int actions, IExplorationPolicy explorationPolicy, bool randomize ) : System | ||
states | int | Amount of possible states. |
actions | int | Amount of possible actions. |
explorationPolicy | IExplorationPolicy | Exploration policy. |
randomize | bool | Randomize action estimates or not. |
Résultat | System |
public UpdateState ( int previousState, int action, double reward, int nextState ) : void | ||
previousState | int | Previous state. |
action | int | Action, which leads from previous to the next state. |
reward | double | Reward value, received by taking specified action from previous state. |
nextState | int | Next state. |
Résultat | void |