Method | Description | |
---|---|---|
Beta ( this |
Beta Function
|
|
Beta ( double x, double y ) : double |
Beta Function
|
|
BetaIncomplete ( double a, double b, double x ) : double |
Returns the lower incomplete (unregularized) beta function I_x(a,b) = int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
|
|
BetaLn ( this |
Log Beta Function
|
|
BetaLn ( double x, double y ) : double |
Log Beta Function
|
|
BetaRegularized ( double a, double b, double x ) : double |
Returns the regularized lower incomplete beta function I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
|
|
BetaRegularized ( double a, double b, double x, int maxIteration ) : double |
Returns the regularized lower incomplete beta function I_x(a,b) = 1/Beta(a,b) * int(t^(a-1)*(1-t)^(b-1),t=0..x) for real a > 0, b > 0, 1 >= x >= 0.
|
|
Binomial ( int n, int k ) : double |
Computes the binomial coefficient: n choose k.
|
|
BinomialLn ( int n, int k ) : double |
Computes the natural logarithm of the binomial coefficient: ln(n choose k).
|
|
DiGamma ( double x ) : double |
Computes the Digamma function which is mathematically defined as the derivative of the logarithm of the gamma function. This implementation is based on Jose Bernardo Algorithm AS 103: Psi ( Digamma ) Function, Applied Statistics, Volume 25, Number 3, 1976, pages 315-317. Using the modifications as in Tom Minka's lightspeed toolbox.
|
|
DiGammaInv ( double p ) : double |
Computes the inverse Digamma function: this is the inverse of the logarithm of the gamma function. This function will only return solutions that are positive. This implementation is based on the bisection method.
|
|
Erf ( double x ) : double |
Calculates the error function.
|
|
ErfInv ( double z ) : double |
Calculates the inverse error function evaluated at z. Calculates the inverse error function evaluated at z.
|
|
Erfc ( double x ) : double |
Calculates the complementary error function.
|
|
ErfcInv ( double z ) : double |
Calculates the complementary inverse error function evaluated at z. calculates the complementary inverse error function evaluated at z. We have tested this implementation against the arbitrary precision mpmath library and found cases where we can only guarantee 9 significant figures correct. |
|
ExponentialMinusOne ( double power ) : double |
Numerically stable exponential minus one, i.e.
|
|
Factorial ( int x ) : double |
Computes the factorial function x -> x! of an integer number > 0. The function can represent all number up to 22! exactly, all numbers up to 170! using a double representation. All larger values will overflow. If you need to multiply or divide various such factorials, consider using the logarithmic version FactorialLn instead so you can add instead of multiply and subtract instead of divide, and then exponentiate the result using System.Math.Exp. This will also circumvent the problem that factorials become very large even for small parameters. |
|
FactorialLn ( int x ) : double |
Computes the logarithmic factorial function x -> ln(x!) of an integer number > 0.
|
|
GeneralHarmonic ( int n, double m ) : double |
Compute the generalized harmonic number of order n of m. (1 + 1/2^m + 1/3^m + ... + 1/n^m)
|
|
Harmonic ( int t ) : double |
Computes the t'th Harmonic number.
|
|
Hypotenuse ( System.Complex a, System.Complex b ) : System.Complex |
Numerically stable hypotenuse of a right angle triangle, i.e.
|
|
Hypotenuse ( double a, double b ) : double |
Numerically stable hypotenuse of a right angle triangle, i.e.
|
|
Hypotenuse ( float a, float b ) : float |
Numerically stable hypotenuse of a right angle triangle, i.e.
|
|
Logistic ( double p ) : double |
Computes the logistic function. see: http://en.wikipedia.org/wiki/Logistic
|
|
Logit ( double p ) : double |
Computes the logit function. see: http://en.wikipedia.org/wiki/Logit
|
|
Multinomial ( int n, int ni ) : double |
Computes the multinomial coefficient: n choose n1, n2, n3, ...
|
Method | Description | |
---|---|---|
ErfImp ( double z, bool invert ) : double |
Implementation of the error function.
|
|
ErfInvImpl ( double p, double q, double s ) : double |
The implementation of the inverse error function.
|
|
EvaluatePolynomial ( double poly, double z ) : double |
A helper function to evaluate polynomials fast.
|
|
IntializeFactorial ( ) : void | ||
Series ( Func |
Numerically stable series summation
|
|
SpecialFunctions ( ) |
public static Beta ( this |
||
xs | this |
|
ys | IEnumerable |
|
return | IEnumerable |
public static Beta ( double x, double y ) : double | ||
x | double | |
y | double | |
return | double |
public static BetaIncomplete ( double a, double b, double x ) : double | ||
a | double | The first Beta parameter, a positive real number. |
b | double | The second Beta parameter, a positive real number. |
x | double | The upper limit of the integral. |
return | double |
public static BetaLn ( this |
||
xs | this |
|
ys | IEnumerable |
|
return | IEnumerable |
public static BetaLn ( double x, double y ) : double | ||
x | double | |
y | double | |
return | double |
public static BetaRegularized ( double a, double b, double x ) : double | ||
a | double | The first Beta parameter, a positive real number. |
b | double | The second Beta parameter, a positive real number. |
x | double | The upper limit of the integral. |
return | double |
public static BetaRegularized ( double a, double b, double x, int maxIteration ) : double | ||
a | double | The first Beta parameter, a positive real number. |
b | double | The second Beta parameter, a positive real number. |
x | double | The upper limit of the integral. |
maxIteration | int | 최대 반복 횟수 |
return | double |
public static Binomial ( int n, int k ) : double | ||
n | int | A nonnegative value n. |
k | int | A nonnegative value h. |
return | double |
public static BinomialLn ( int n, int k ) : double | ||
n | int | A nonnegative value n. |
k | int | A nonnegative value h. |
return | double |
public static DiGamma ( double x ) : double | ||
x | double | The argument of the digamma function. |
return | double |
public static DiGammaInv ( double p ) : double | ||
p | double | The argument of the inverse digamma function. |
return | double |
public static Erf ( double x ) : double | ||
x | double | The value to evaluate. |
return | double |
public static ErfInv ( double z ) : double | ||
z | double | value to evaluate. |
return | double |
public static Erfc ( double x ) : double | ||
x | double | The value to evaluate. |
return | double |
public static ErfcInv ( double z ) : double | ||
z | double | value to evaluate. |
return | double |
public static ExponentialMinusOne ( double power ) : double | ||
power | double | A number specifying a power. |
return | double |
public static GeneralHarmonic ( int n, double m ) : double | ||
n | int | The order parameter. |
m | double | The power parameter. |
return | double |
public static Harmonic ( int t ) : double | ||
t | int | The Harmonic number which needs to be computed. |
return | double |
public static Hypotenuse ( System.Complex a, System.Complex b ) : System.Complex | ||
a | System.Complex | The length of side a of the triangle. |
b | System.Complex | The length of side b of the triangle. |
return | System.Complex |
public static Hypotenuse ( double a, double b ) : double | ||
a | double | The length of side a of the triangle. |
b | double | The length of side b of the triangle. |
return | double |
public static Hypotenuse ( float a, float b ) : float | ||
a | float | The length of side a of the triangle. |
b | float | The length of side b of the triangle. |
return | float |
public static Logistic ( double p ) : double | ||
p | double | The parameter for which to compute the logistic function. |
return | double |
public static Logit ( double p ) : double | ||
p | double | The parameter for which to compute the logit function. This number should be /// between 0 and 1. |
return | double |
public static Multinomial ( int n, int ni ) : double | ||
n | int | A nonnegative value n. |
ni | int | An array of nonnegative values that sum to |
return | double |