C# Class Encog.ML.SVM.Training.SVMTrain

Inheritance: Encog.ML.Train.BasicTraining
Show file Open project: encog/encog-silverlight-core Class Usage Examples

Public Methods

Method Description
Iteration ( ) : void

Perform either a train or a cross validation. If the folds property is greater than 1 then cross validation will be done. Cross validation does not produce a usable model, but it does set the error. If you are cross validating try C and Gamma values until you have a good error rate. Then use those values to train, producing the final model.

Pause ( ) : TrainingContinuation
Resume ( TrainingContinuation state ) : void
SVMTrain ( SupportVectorMachine method, IMLDataSet dataSet ) : Encog.MathUtil.Error

Construct a trainer for an SVM network.

Private Methods

Method Description
Evaluate ( svm_parameter param, svm_problem prob, double target ) : double

Evaluate the error for the specified model.

Method Details

Iteration() public final method

Perform either a train or a cross validation. If the folds property is greater than 1 then cross validation will be done. Cross validation does not produce a usable model, but it does set the error. If you are cross validating try C and Gamma values until you have a good error rate. Then use those values to train, producing the final model.
public final Iteration ( ) : void
return void

Pause() public final method

public final Pause ( ) : TrainingContinuation
return Encog.Neural.Networks.Training.Propagation.TrainingContinuation

Resume() public method

public Resume ( TrainingContinuation state ) : void
state Encog.Neural.Networks.Training.Propagation.TrainingContinuation
return void

SVMTrain() public method

Construct a trainer for an SVM network.
public SVMTrain ( SupportVectorMachine method, IMLDataSet dataSet ) : Encog.MathUtil.Error
method Encog.ML.SVM.SupportVectorMachine The network to train.
dataSet IMLDataSet The training data for this network.
return Encog.MathUtil.Error