C# Класс Accord.Neuro.Learning.DeltaRuleLearning

Delta rule learning algorithm.

This learning algorithm is used to train one layer neural network of Activation Neurons with continuous activation function, see SigmoidFunction for example.

See information about delta rule learning algorithm.

Наследование: ISupervisedLearning
Показать файл Открыть проект Примеры использования класса

Открытые методы

Метод Описание
DeltaRuleLearning ( ActivationNetwork network ) : System

Initializes a new instance of the DeltaRuleLearning class.

Run ( double input, double output ) : double

Runs learning iteration.

Runs one learning iteration and updates neuron's weights.

RunEpoch ( double input, double output ) : double

Runs learning epoch.

The method runs one learning epoch, by calling Run method for each vector provided in the input array.

Описание методов

DeltaRuleLearning() публичный Метод

Initializes a new instance of the DeltaRuleLearning class.
Invalid nuaral network. It should have one layer only.
public DeltaRuleLearning ( ActivationNetwork network ) : System
network ActivationNetwork Network to teach.
Результат System

Run() публичный Метод

Runs learning iteration.

Runs one learning iteration and updates neuron's weights.

public Run ( double input, double output ) : double
input double Input vector.
output double Desired output vector.
Результат double

RunEpoch() публичный Метод

Runs learning epoch.

The method runs one learning epoch, by calling Run method for each vector provided in the input array.

public RunEpoch ( double input, double output ) : double
input double Array of input vectors.
output double Array of output vectors.
Результат double