C# 클래스 OpenCvSharp.EM

The class implements the Expectation Maximization algorithm.
상속: Algorithm
파일 보기 프로젝트 열기: shimat/opencvsharp

공개 메소드들

메소드 설명
Create ( ) : EM

Creates empty EM model.

GetCovs ( ) : OpenCvSharp.Mat[]

Returns covariation matrices. Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, each matrix is a square floating-point matrix NxN, where N is the space dimensionality.

GetMeans ( ) : OpenCvSharp.Mat

Returns the cluster centers (means of the Gaussian mixture). Returns matrix with the number of rows equal to the number of mixtures and number of columns equal to the space dimensionality.

GetWeights ( ) : OpenCvSharp.Mat

Returns weights of the mixtures. Returns vector with the number of elements equal to the number of mixtures.

Predict2 ( InputArray sample, OutputArray probs = null ) : Vec2d

Predicts the response for sample

TrainE ( InputArray samples, InputArray means0, InputArray covs0 = null, InputArray weights0 = null, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool

Estimates Gaussian mixture parameters from the sample set

TrainM ( InputArray samples, InputArray probs0, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool

Estimates Gaussian mixture parameters from the sample set

보호된 메소드들

메소드 설명
Dispose ( bool disposing ) : void

Clean up any resources being used.

EM ( IntPtr p ) : System

Creates instance by raw pointer cv::ml::EM*

메소드 상세

Create() 공개 정적인 메소드

Creates empty EM model.
public static Create ( ) : EM
리턴 EM

Dispose() 보호된 메소드

Clean up any resources being used.
protected Dispose ( bool disposing ) : void
disposing bool /// If disposing equals true, the method has been called directly or indirectly by a user's code. Managed and unmanaged resources can be disposed. /// If false, the method has been called by the runtime from inside the finalizer and you should not reference other objects. Only unmanaged resources can be disposed. ///
리턴 void

EM() 보호된 메소드

Creates instance by raw pointer cv::ml::EM*
protected EM ( IntPtr p ) : System
p System.IntPtr
리턴 System

GetCovs() 공개 메소드

Returns covariation matrices. Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
public GetCovs ( ) : OpenCvSharp.Mat[]
리턴 OpenCvSharp.Mat[]

GetMeans() 공개 메소드

Returns the cluster centers (means of the Gaussian mixture). Returns matrix with the number of rows equal to the number of mixtures and number of columns equal to the space dimensionality.
public GetMeans ( ) : OpenCvSharp.Mat
리턴 OpenCvSharp.Mat

GetWeights() 공개 메소드

Returns weights of the mixtures. Returns vector with the number of elements equal to the number of mixtures.
public GetWeights ( ) : OpenCvSharp.Mat
리턴 OpenCvSharp.Mat

Predict2() 공개 메소드

Predicts the response for sample
public Predict2 ( InputArray sample, OutputArray probs = null ) : Vec2d
sample InputArray
probs OutputArray
리턴 Vec2d

TrainE() 공개 메소드

Estimates Gaussian mixture parameters from the sample set
public TrainE ( InputArray samples, InputArray means0, InputArray covs0 = null, InputArray weights0 = null, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool
samples InputArray
means0 InputArray
covs0 InputArray
weights0 InputArray
logLikelihoods OutputArray
labels OutputArray
probs OutputArray
리턴 bool

TrainM() 공개 메소드

Estimates Gaussian mixture parameters from the sample set
public TrainM ( InputArray samples, InputArray probs0, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool
samples InputArray
probs0 InputArray
logLikelihoods OutputArray
labels OutputArray
probs OutputArray
리턴 bool