메소드 | 설명 | |
---|---|---|
Create ( ) : |
Creates empty EM model.
|
|
GetCovs ( ) : OpenCvSharp.Mat[] |
Returns covariation matrices. Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, each matrix is a square floating-point matrix NxN, where N is the space dimensionality.
|
|
GetMeans ( ) : OpenCvSharp.Mat |
Returns the cluster centers (means of the Gaussian mixture). Returns matrix with the number of rows equal to the number of mixtures and number of columns equal to the space dimensionality.
|
|
GetWeights ( ) : OpenCvSharp.Mat |
Returns weights of the mixtures. Returns vector with the number of elements equal to the number of mixtures.
|
|
Predict2 ( InputArray sample, OutputArray probs = null ) : Vec2d |
Predicts the response for sample
|
|
TrainE ( InputArray samples, InputArray means0, InputArray covs0 = null, InputArray weights0 = null, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool |
Estimates Gaussian mixture parameters from the sample set
|
|
TrainM ( InputArray samples, InputArray probs0, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool |
Estimates Gaussian mixture parameters from the sample set
|
메소드 | 설명 | |
---|---|---|
Dispose ( bool disposing ) : void |
Clean up any resources being used.
|
|
EM ( |
Creates instance by raw pointer cv::ml::EM*
|
protected Dispose ( bool disposing ) : void | ||
disposing | bool | /// If disposing equals true, the method has been called directly or indirectly by a user's code. Managed and unmanaged resources can be disposed. /// If false, the method has been called by the runtime from inside the finalizer and you should not reference other objects. Only unmanaged resources can be disposed. /// |
리턴 | void |
public Predict2 ( InputArray sample, OutputArray probs = null ) : Vec2d | ||
sample | InputArray | |
probs | OutputArray | |
리턴 | Vec2d |
public TrainE ( InputArray samples, InputArray means0, InputArray covs0 = null, InputArray weights0 = null, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool | ||
samples | InputArray | |
means0 | InputArray | |
covs0 | InputArray | |
weights0 | InputArray | |
logLikelihoods | OutputArray | |
labels | OutputArray | |
probs | OutputArray | |
리턴 | bool |
public TrainM ( InputArray samples, InputArray probs0, OutputArray logLikelihoods = null, OutputArray labels = null, OutputArray probs = null ) : bool | ||
samples | InputArray | |
probs0 | InputArray | |
logLikelihoods | OutputArray | |
labels | OutputArray | |
probs | OutputArray | |
리턴 | bool |